• 제목/요약/키워드: Effective Moment of Inertia

검색결과 75건 처리시간 0.037초

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

EC-2의 콘크리트 응력-변형률 곡선에 기반한 휨부재의 유효단면2차모멘트 (Effective Moment of Inertia of Flexural Members Based on the Concrete Stress-Strain Curve in EC-2)

  • 염환석;김우
    • 콘크리트학회논문집
    • /
    • 제28권6호
    • /
    • pp.655-663
    • /
    • 2016
  • 본 연구는 EC-2에서 규정된 포물-직사각형 응력-변형률 곡선에 근거하여 비선형 해석을 수행하여 구해진 철근콘크리트 보의 휨모멘트-평균곡률 관계와 유효단면2차모멘트를 보여주고 있다. 검토된 변수는 콘크리트 강도와 철근비이고, 비선형 해석으로 얻어진 휨모멘트-평균곡률 관계와 유효단면2차모멘트를 현행 KCI 규준과 비교하였다. 비교한 결과는 다음과 같다. KCI 규준(Branson 방법)은 원래 $M/M_{cr}$은 2.2에서 4까지이고, $I_{ut}/I_{cr}$은 1.3에서 3.5까지의 범위의 실험 자료에서 근거하여 유도되었으므로 이 범위 내에서는 비선형 해석으로 얻어진 단면2차모멘트가 Branson 방법으로 구한 값과 잘 일치하였다. 그러나 이 범위 밖에서는 두 결과가 크게 차이가 있음을 발견하였다. 특히, 철근비가 작은 보에서 비선형 해석으로 구한 단면2차모멘트가 KCI 규준(Branson 방법)으로 구한 것보다 크게 작아진다. 이 결과는 건물의 슬래브와 같이 철근비가 작은 부재의 처짐이 현행 설계규준에 따라 계산된 처짐보다 훨씬 더 커진다는 의미가 된다.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Structural behaviour of concrete beam under electrochemical chloride extraction against a chloride-bearing environment

  • Ki Yong Ann;Jiseok Kim;Woongik Hwang
    • Computers and Concrete
    • /
    • 제34권1호
    • /
    • pp.49-61
    • /
    • 2024
  • The present study concerns a removal of chloride ions and structural behaviour of concrete beam at electrochemical chloride extraction (ECE). The electrochemical properties included 1000 mA/m2 current density for 2, 4 and 8 weeks. It was found that an increase in the duration of ECE resulted in an increase in the extraction rate of chlorides, in the range of 35-85%, irrespective of chloride contamination. In structural behaviour, the strength and maximum bending moment of specimen was always lowered by ECE. Moreover, the flexural rigidity and bending stiffness were reduced by the loss of effective cross-section area in the linear elastic range. Simultaneously, the inertia moment was substantially subjected to 70% loss of the cross-section by the tensile strain at the condition of the failure. However, a lower rate of the inertia moment reduction was achieved by ECE, implying the higher resistance to the cracking, but the higher risk of deformation.

EFFECT OF CONCRETE STRENGTH ON FLEXURAL DEFLECTION OF HIGH-STRENGTH REINFORCED CONCRETE BEAMS

  • Inju Lee;Taewan Kim;Sung-Nam Hong;Jie Cui;Sun-Kyu Park
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1313-1317
    • /
    • 2009
  • Deflections of Reinforced concrete structures must satisfy the permissible values and it is hard to predict the due to uncertainty of deflection of the reinforced concrete structures. Thus, many researchers have suggested a number of experimental equation of deflection against the uncertainty. In a specification, a procedure to evaluate flexure deflection using effective moment of inertia and moment-curvature relation is suggested. ACI offers a method using effective moment of inertia, which has been developed by Branson. Eurocode 2(EC2) suggests a procedure to evaluate deflection of reinforced concrete structure using moment-curvature relation. In this paper, a series of experiments were conducted on the singly reinforced concrete beams which have the same reinforcement ratio and different concrete strength. Therefore, the effect of the concrete strength on the deflection of the beams was analysed. The deflections obtained from the experiment were compared with the deflections calculated with ACI code and EC2.

  • PDF

A computer program for the analysis of reinforced concrete frames with cracked beam elements

  • Tanrikulu, A. Kamil;Dundar, Cengiz;Cagatay, Ismail H.
    • Structural Engineering and Mechanics
    • /
    • 제10권5호
    • /
    • pp.463-478
    • /
    • 2000
  • An iterative procedure for the analysis of reinforced concrete frames with beams in cracked state is presented. ACI and CEB model equations are used for the effective moment of inertia of the cracked members. In the analysis, shear deformations are taken into account and reduced shear stiffness is considered by using effective shear modulus models available in the literature. Based on the aforementioned procedure, a computer program has been developed. The results of the computer program have been compared with the experimental results available in the literature and found to be in good agreement. Finally, a parametric study is carried out on a two story reinforced concrete frame.

고속디이젤 기관의 점성비틀림 진동댐퍼에 관한 연구 (A study on the viscous torsional vibration damper in a high speed diesel engine)

  • 한영출
    • 오토저널
    • /
    • 제4권1호
    • /
    • pp.20-30
    • /
    • 1982
  • Recent diesel engine has achieved high speed running comparable to that of gasoline engine as a speed improvement effort. Consequently, torsional vibration of high-speed diesel engine induced vibration nosise, reduced horsepower and the like. Viscous damper which is thought to be effective in curtailing the torsional vibration was studied over a wide range of speed. In this investigation, a water cooling, 4-cycle high-speed diesel engine(Msx. 3500 rpm)was used for the study. Theoretical analysis was made by assuming the engine to be an ideal equivalent system(length, moment of inertia) i. e. the multi-degree of freedom equivalent torsional vibration system with damper was analyzed. In the analysis, the inertia moment of suitable damper for this experiment was calculated by varying the relative damping coefficient of damper of engine for each damper. Furthermore, in the torsional vibration experiment, the torsional vibration amplitude of the crankshaft system was measured when the engine was equipped with dampers of different moments of inertia and also when the engine was equipped without dampers. The experimental results were compared with the analytical values and were found to be satisfied. The results of this investigation are summarized below; (1) It was found that for the engine equipped with dampers, the torsional vibration amplitude was reduced to about one third of those without dampers. (2) The optimum value of inertia moment of viscous damper for the engine was found to be about Id=1.05(kg.cm.s$^{2}$) (3) The optimum damping coefficient and the ratio of moment of inertia for the engine were found to be about Ca= 850(kg.cm.s), Rd=0.509, respectively (b1 dapmper).

  • PDF

Seismic characterization of cold formed steel pallet racks

  • Saravanan, M.;Marimuthu, V.;Prabha, P.;Surendran, M.;Palani, G.S.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.955-967
    • /
    • 2014
  • Storage racks are used worldwide in industries and commercial outlets due to the advantage of lighter, faster erection and easy alteration of pallet level as required. The studies to understand the behaviour of cold formed steel pallet racks, under seismic action is one of the emerging area of research. The rack consists of perforated uprights and beams with hook-in end connector, which enables the floor height adjustments. The dynamic characteristics of these racks are not well established. This paper presents the dynamic characteristics of 3-D single bay two storey pallet rack system with hook-in end connectors, which is tested on shake table. The sweep sine test and El Centro earthquake acceleration is used to evaluate the seismic performance of the cold formed steel pallet racks. Also an attempt is made to evaluate the realistic dynamic characteristics by using STAAD Pro software. Modal analysis is performed by incorporating the effective moment of inertia of the upright, which considers the effect of presence of perforations and rotational stiffness of the beam-to-upright connection to determine the realistic fundamental frequency of pallet racks, which is required for carrying out the seismic design. Finite element model of the perforated upright section has been developed as a cantilever beam through which effective moment of inertia is evaluated. The stiffness of the hook-in connector is taken from the previous study by Prabha et al. (2010). The results from modal analysis are in good agreement with the respective experimental results.

철근콘크리트 보의 균열 폭과 처짐 관계 (Correlation Between Crack Widths and Deflection in Reinforced Concrete Beams)

  • 강주오;김강수;이득행;이승배
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.184-192
    • /
    • 2010
  • 철근콘크리트 구조물의 사용성을 검토할 때 처짐은 가장 중요한 사항 중 하나이며, 철근콘크리트 휨 부재의 처짐은 일반적으로 유효 단면2차모멘트의 개념을 적용하여 구해진다. 그러나 이미 사용중인 철근콘크리트 보에서 정확한 사용하중을 알기 어려운 경우에는 기존의 방법으로 처짐을 계산하는 것이 쉽지 않다. 따라서, 이 연구에서는 철근콘크리트 보에서 균열과 처짐은 상호 밀접한 관련이 있다는 사실을 바탕으로 작용하는 하중의 크기에 무관하게 철근 콘크리트 보 부재의 균열 상태로부터 처짐을 쉽게 산정할 수 있는 방법을 제안하고자 하였다. 균열폭의 합, 평균변형률 및 곡률 등의 관계를 이용하여 처짐식을 제안하였으며, 수정계수를 적용하여 보다 정확한 처짐식을 제안하고자 하였다. 이 제안식을 사용할 경우, 철근콘크리트 보에 작용하는 하중 크기에 무관하게 균열을 측정함으로써 처짐 추정치를 얻을 수 있으며, 유효 단면 2차 모멘트 값을 산출하여 처짐을 산정하는 기존의 방법에 비해 비교적 간단하게 처짐을 산출 할 수 있다.

고속엔진축계용 점성 비틀림진동감쇠기의 성능해석 및 실험 (A Performance Analysis and Experiment of Viscous Torsional Vibration Damper for High Speed Engine Shaft System)

  • 양보석;정태영;김경득;김동조
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.98-105
    • /
    • 1997
  • In general, crankshafts which are used in internal combustion reciprocating engines are subjects to high torsional vibration. Therefore, a damper is often used to minimize the torsional vibration in reciprocating engines. In this paper, in order to investigate damping performance of viscous damper, the real effective viscosity and complex damping coefficient of silicone oil, and the effective inertia moment of inertia ring are calculated considering the relative motion between damper casing and inertia ring. Based on these results multi-cylinder shaft is modeled into equivalent 2-degree of freedom system and optimum condition is estimated by calculating the amplification factor of viscous damper. Also the test damper was manufactured according to the result of theoretical investigation, the performance and durability was ascertained through experimental examination.

  • PDF