• 제목/요약/키워드: Effective Length of Pipe

검색결과 57건 처리시간 0.021초

화장실 배수관에 따른 배수소음 평가 (Rating of Noise Emission by Plumbing system in Bathroom)

  • 정진연;이성호;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.923-927
    • /
    • 2003
  • The aim of this study is to investigate the characteristics and quantity of the noise reduction by pipe material, wrapped pipe with glass wool and installed pipe height The characteristics of noise emission from drain-pipes is as follows. The noise reduction pipe in PVC can reduce noise levels in 7-10㏈ and the cast-iron pipe can reduce in 14㏈compared with the normal PVC pipe. In these days, the glass wool was used for preventing the burst and the noise reduction. But the glass wool for wrapping pipe is not effective to the noise reduction. The characteristics of noise emission from various installed pipe height were measured As the ceiling space of the remodeled building was raised, the noise level was troubled by increasing of the vertical pipe length.

  • PDF

매설환경에 따른 배수관망의 누수발생원인 특성분석 (Development of a Probability Model for Burst Risks of Water Main using the Analysis Methods of Leakage Type)

  • 박상봉;최태호;구자용
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.141-152
    • /
    • 2011
  • In this study, we extracted effective factors of pipe burst from the status data of water asset, operating data of pressure, volume and etc. and 7 years' pipe burst and repair records. The extracted factors were sorted by each attribution and then a statistical analysis was performed to generate a pipe burst probability function using the logistic regression model. As the result, material, diameter, length, laying year, pressure and road width affected to pipe burst significantly. Especially, in case of small diameter, laying year was most effective factor and in case of steel pipe, external loading was main cause of burst, and in case of cast iron, PE, PC, HP pipes, the deterioration of joint was main cause. The other side, as a result of Hosmer-Lemeshow goodness of fit test the models are turned out significant statistically. Also the classification criteria were determined to minimize the total cost from classification errors, when the predicted probability was more than 18% this pipe could have a chance of burst.

동종금속용접이 이종금속용접부 잔류응력에 미치는 영향 평가 시 안전단 길이에 따른 효과 (Effects of Similar Metal Weld on Residual Stress in Dissimilar Metal Weld According to Safe End Length)

  • 송태광;전윤배;오창영;배홍열;김윤재;이상훈;이경수;박치용
    • 대한기계학회논문집A
    • /
    • 제33권7호
    • /
    • pp.664-672
    • /
    • 2009
  • Nozzle in nuclear power plant is connected to pipe using safe end. Dissimilar metal weld between nozzle and safe end is followed by similar metal weld between safe end and pipe. And thus residual stress in dissimilar metal weld can be affected by similar metal weld. Similar metal weld impose bending stress on dissimilar metal weld, which is according to the length of safe end. In this study, simple nozzle model which covers various radius to thickness ratios was proposed to quantify residual stress in dissimilar metal weld based on finite element analyses. As a result, short length of safe end was proved to be more effective to mitigate residual stress in dissimilar metal weld and critical effective length of safe end is provided according to the radius to thickness ratio.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

가변열전도성능 히트파이프(VCHP)의 온도제어 성능에 관한 실험 (An Experimental Study on the Temperature-Control Performance of a Variable Conductance Heat Pipe)

  • 부준홍;박철민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2124-2129
    • /
    • 2007
  • A VCHP was fabricated and tested for its thermal performance. The container was made of copper, and the working fluid was water. STS-316 screen of mesh number 100 was inserted as a capillary structure. As a baseline performance, a normal heat pipe of the same dimensions was tested in advance to compare with VCHP, where an inert gas container was attached. The outer diameter of the heat pipe was 12.8 mm and the total length was 600 mm. The evaporator and the condenser lengths were both 200 mm. The thermal load ranged from 20 to 300W. Typical result revealed that the operating temperature of the VCHP stayed almost constant, while that of the normal heat pipe varied as much as 40$^{\circ}C$. Therefore, it was demonstrated that the VCHP is very effective for temperature control of heat-dissipating devices.

  • PDF

진동형 히트 파이프를 이용한 하계 매스 콘크리트의 수화열 냉각에 관한 실험적 고찰 (An Experimental Study on Cooling of Hydration Heat of Mass Concrete Structure using Pulsating Heat Pipe in Summer Season)

  • 양태진;김정훈;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권1호
    • /
    • pp.51-57
    • /
    • 2007
  • In process of reinforced concrete (RC) box structure. the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete. this paper reports results of hydration heat control in mass concrete structure using the pulsating heat pipe. There were three RC box molds($1.2{\times}l.8{\times}2.4m^3$) which shows a difference as compared with each other. One was not equipped with pulsating heat pipe. The others were equipped with pulsating heat pipe. All of them were cooled with natural air convection. The pulsating heat pipe was composed of serpentine type copper pipe with 10 turns (outer diameter: 4mm. inner diameter: 2.8mm). The working fluid was R-22 and its charging ratio was 40% by volume. The conditions such as the number of turns. the length and the pitch of the pulsating heat pipe and the size of concrete structure were changed. Based on these experiments, it was confirmed that this construction method using pulsating heat pipe was effective to remove hydration heat of mass concrete structure and thus it was possible to prevent harmful thermal crack and construction Period and costs of concrete structure would be cut down.

디젤기관의 흡기 맥동류가 체적효율에 미치는 영향 (The Effects of Intake Pulsating Flow on Volumetric Efficiency in a Diesel Engine)

  • 강희영;고대권;안수길
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.19-25
    • /
    • 2005
  • Empirical experiments have been undertaken to investigate the effects of Intake Pulsating Flow on volumetric efficiency in a diesel engine. Waves occurs in the manifolds of engine owing to the periodic nature of the induction and exhaust processes caused by piston motion. During induction process, as waves travel both directions, they are reflected and interacted each other and pressure waves are transmitted through it. Hence, the flow become more complex and unsteady flow. These pressure waves act upon intake pulsating flow and affects on volumetric efficiency. In this paper the effects of change in length of induction pipes and wide range of engine speed on volumetric efficiency was examined and evaluated. It was found that volumetric efficiency was affected by intake pulsating flow with engine speed and the pipe length. The results obtained were considered by adopting a theory of wave action.

  • PDF

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

보조기구의 형상 변경에 따른 배기계에서의 압력 변동 분석 (The Analysis of the Pressure Fluctuation in the Exhaust System According to the Assistant Device Configuration)

  • 정성원;심국상
    • 한국산업융합학회 논문집
    • /
    • 제6권4호
    • /
    • pp.325-331
    • /
    • 2003
  • This paper described the characteristics of the exhaust pressure and proposed the assistant device for detection of misfired cylinder. Misfire, one of abnormal combustion, affects a bad influence of the 3-way catalyst and emits unburned hydrocarbon. Therefore, to prevent these unusual phenomena and eliminate the factor of the environmental pollution, early detection and correction of the misfired cylinder play a very important role. The configuration of assistant device was changed by length and diameter of pipe and analyzed with the install position on the exhaust system. Experimental results showed that the configuration of assistant device is not affected more than length and diameter of pipe and the assistant device is be effective in the detection of misfired cylinder on the gasoline engine.

  • PDF

디젤기관의 연소에 미치는 분사계의 영향 (Effects of the fuel injection system on combustion in a diesel engine)

  • 권순익;김완
    • 오토저널
    • /
    • 제15권1호
    • /
    • pp.37-44
    • /
    • 1993
  • Fuel injection system is an important tool in the exhaust emission and performance of a diesel engine. Effects of the fuel injection system in diesel combustion was investigated experimentally by measuring the performance and analyzing the combustion phenomena in a D.I. diesel engine. The selected injection parameters were nozzle opening pressure, nozzle projection length, and nozzle spray angle. From the measured results, it is shown that the fuel injection pipe diameter is an effective means to improve engine performance in a middle and high speed range and the 2 stage spring nozzle holder has the advantage of increasing the engine performance due to the initial injection pressure in a low speed range. It has been also shown that increasing nozzle opening pressure resulted in decrease in smoke, but increase in NO$_{x}$ from the engine.e.

  • PDF