• Title/Summary/Keyword: Effective Flexural Stiffness

Search Result 88, Processing Time 0.028 seconds

Stiffening schemes for CFS built-up I-beams with large global imperfections: Capacity and behaviour

  • Dar, M. Adil;Anbarasu M.;Dar, A.R.;Islam, Naqeeb Ul;Ghowsi, Ahmad Fayeq;Carvalho, Hermes
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.447-458
    • /
    • 2022
  • Cold-formed steel (CFS) sections are thin-walled, therefore, more susceptible to different types of geometric imperfections. Global type of geometric imperfections has a significant impact on the load-carrying capacity of flexural members. This paper reports an experimental study that discusses the influence of global imperfections on the flexural response of CFS built-up I-beams composed of two lipped channels, with simply supported ends, under four-point loading. Global imperfections of magnitude over eight times the maximum permissible ones were induced in the specimens, leading to their distress. Using various simple stiffening schemes, the capacity and stiffness of the distressed specimens were improvised. The performance comparisons were made based on the maximum loads resisted, flexural stiffnesses offered, and failure modes experienced by the specimens. As experimental data on such distressed specimens are currently lacking in the literature, the test results of the present study will provide the necessary data needed by future researchers to numerically extend this study further, which will help in the development of necessary design guidelines for the same. The stiffening schemes significantly improved the structural efficiency of distressed specimens in terms of strength and stiffness, by over 60%. As a result, an effective and time-saving solution to such realistic structural engineering problems is given.

Service load response prediction of reinforced concrete flexural members

  • Ning, Feng;Mickleborough, Neil C.;Chan, Chun-Man
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.1-16
    • /
    • 2001
  • A reliable and accurate method has been developed to predict the flexural deformation response of structural concrete members subject to service load. The method that has been developed relates the extent of concrete cracking, measured as a function of the magnitude of applied moment in a member, to the reduction in the effective moment of inertia of cracked reinforced concrete members under service load conditions. The ratio of the area of the moment diagram where the moment exceeds the cracking moment, to the total area of the moment diagram for any loading, provides the basis for the calculation of the effective moment of inertia. This ratio also represents mathematically a probability of crack occurrence. Verification of this method for the determination of the effective moment of inertia has been achieved from an experimental test program, and has included beam tests with different loading configurations, and shear wall tests subjected to a range of vertical and lateral load levels. Further verification of this method has been made with reference to the experimental investigation of other recently published work.

Large-scale testing and numerical study on an innovative dovetail UHPC joint subjected to negative moment

  • Zhang, Qifeng;Feng, Yan;Cheng, Zhao;Jiao, Yang;Cheng, Hang;Wang, Jingquan;Qi, Jianan
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.175-183
    • /
    • 2022
  • To study the working mechanism and size effect of an innovative dovetail UHPC joint originated from the 5th Nanjing Yangtze River Bridge, a large-scale testing subject to negative bending moment was conducted and compared with the previous scaled specimens. The static responses, i.e., the crack pattern, failure mode, ductility and stiffness degradation were analyzed. It was found that the scaled specimens presented similar working stages and working mechanism with the large-scale ones. However, the post-cracking ductility and relative stiffness degradation all decrease with the enlarged length/scale, apart from the relative stiffness after flexural cracking. The slab stiffness at the flexural cracking stage is 90% of the initial stiffness while only 24% of the initial stiffness reserved in the ultimate stage. Finite element model (FEM) was established and compared with the experiments to verify its effectiveness in exploring the working mechanism of the innovative joint. Based on this effective method, a series of FEMs were established to further study the influence of material strength, pre-stressing level and ratio of reinforcement on its deflection-load relationship. It is found that the ratio of reinforcement can significantly improve its load-carrying capacity among the three major-influenced factors.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Performance Based Design of Coupling Beam Considering Probability Distribution of Flexural and Shear Strength (휨강도와 전단강도의 확률분포를 고려한 연결보의 성능기반설계)

  • Kim, Yun-Gon;Cho, Suk-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • In this paper, performance based design of coupling beam using non-linear static analysis is proposed considering probability distribution of flexural and shear strength in order to develop flexural hinge. This method considers post-yielding behavior of coupling beam and stress redistribution of system. It can verify the reduced effective stiffness to meet the current design requirement based on linear analysis. It also evaluates the lateral displacement under service load (un-factored wind load) properly. In addition, it can optimize the coupled shear wall system by taking stress redistribution between members into account. For a simplified 30-story building, non-linear static (push-over) analysis was performed and the structural behavior was checked at performance point and several displacement steps. Furthermore, system behavior according to the amount of reinforcement and depth of coupling beam was explored and compared each other.

Statistical calibration of safety factors for flexural stiffness of composite columns

  • Aslani, Farhad;Lloyd, Ryan;Uy, Brian;Kang, Won-Hee;Hicks, Stephen
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.127-145
    • /
    • 2016
  • Composite column design is strongly influenced by the computation of the critical buckling load, which is very sensitive to the effective flexural stiffness (EI) of the column. Because of this, the behaviour of a composite column under lateral loading and its response to deflection is largely determined by the EI of the member. Thus, prediction models used for composite member design should accurately mirror this behaviour. However, EI varies due to several design parameters, and the implementation of high-strength materials, which are not considered by the current composite design codes of practice. The reliability of the design methods from six codes of practice (i.e., AS 5100, AS/NZS 2327, Eurocode 4, AISC 2010, ACI 318, and AIJ) for composite columns is studied in this paper. Also, the reliability of these codes of practice against a serviceability limit state criterion are estimated based on the combined use of the test-based statistical procedure proposed by Johnson and Huang (1997) and Monte Carlo simulations. The composite columns database includes 100 tests of circular concrete-filled tubes, rectangular concrete-filled tubes, and concrete-encased steel composite columns. A summary of the reliability analysis procedure and the evaluated reliability indices are provided. The reasons for the reliability analysis results are discussed to provide useful insight and supporting information for a possible revision of available codes of practice.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.