• Title/Summary/Keyword: Effective Conductivity

Search Result 714, Processing Time 0.026 seconds

A Study on Prediction of Effective Thermal Conductivity of Nano-Fluids Using Generalized Self-Consistent Model and Modified Eshelby Model (일반화된 자기일치모델과 수정된 에쉘비 모델을 이용한 나노유체의 등가열전도계수 예측에 대한 연구)

  • Lee, Jae-Kon;Kim, Jin Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.887-894
    • /
    • 2013
  • Effective thermal conductivity of nanofluids has been predicted by using generalized self-consistent model and modified Eshelby model, which have been used for analysis of material properties of composites. A nanolayer between base fluid and nanoparticle, one of key factors for abrupt enhancement of thermal conductivity of nanofluids, is included in the analysis. The effective thermal conductivities of the nanofluid predicted by the present study show good agreement with those by models in the literature for the nanolayer with a constant or linear thermal conductivity. The predicted results by the present approach have been confirmed to be consistent with experiments for representative nanofluids such as base fluids of water or ethyleneglycol and nanoparticles of $Al_2O_3$ or CuO to be validated.

Empirical model to estimate the thermal conductivity of granite with various water contents (다양한 함수비를 가진 화강암의 열전도도 추정을 위한 실험적 모델)

  • Cho, Won-Jin;Kwon, Sang-Ki;Lee, Jae-Owan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • To obtain the input data for the design and long-term performance assessment of a high-level waste repository, the thermal conductivities of several granite rocks which were taken from the rock cores from the declined borehole were measured. The thermal conductivities of granite were measured under the different conditions of water content to investigate the effects of the water content on the thermal conductivity. A simple empirical correlation was proposed to predict the thermal conductivity of granite as a function of effective porosity and water content which can be measured with relative ease while neglecting the possible effects of mineralogy, structure and anisotropy. The correlation could predict the thermal conductivity of granite with the effective porosity below 2.7% from the KURT site with an estimated error below 10%.

Electrical Properties of TiO$_2$added ZnO (SnO$_2$가 첨가된 ZnO의 전기적성질)

  • 최우성;박춘배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.221-223
    • /
    • 1995
  • The electrical conductivity of SnO$_2$added ZnO was investigated using the DC and AC methods. The electrical conductivity of SnO$_2$added ZnO was decreased with increasing the concentration of SnO$_2$. The cal쳐lated effective dielectric constants of 3 mol%, 5 mo1%, and 7 mol% are ~7, ~13, and ~120, respectively. The factor of the decrease for the electrical conductivity seems to be the increase of the resistance of grain decreasing the size of grain.

매립지 침출수의 효과적인 제거를 위한 반응성 차수재 개발

  • 이현주;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.395-398
    • /
    • 2003
  • Geosynthetic Clay Liners(GCLs) have been widely used as hydraulic barrier in landfills and remediation projects of contaminated sites. The aim of this research is to modify GCLs for effective removal of contaminants. We perform the free swell test, hydraulic conductivity test, and contaminants (TCE, hexavalent chromium, and nitrate) removal test on the bentonite-ZVI mixture with various ZVI content. As the ZVI content increased, contaminants removal efficiencies and swell volume increased, and hydraulic conductivity decreased.

  • PDF

Electrical Conductivity of Carbon Fiber-Polymer Composite (Carbon 화이버-폴리머 복합체의 전기적 특성)

  • 이재연;최경만
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.603-609
    • /
    • 1998
  • The composites of insulating polymer filled with conducting carbon-fiber were fabricated by molding press method. To understand the fiber aspect-ratio dependence of electrical conductivity the aspect ratio was varied from 4 to 10 The percolation thresholds of transition from the insulator to the conductor de-creased as the fiber aspect ratio increased. The percolation threshold of fiber-segregated composite in this study was smaller than that of fiber-random composite shown in other study. When the electrical con-ductivity curves were fitted by general effective medium equation morphological variable(t) decreased as the fiber aspect-ratio increased.

  • PDF

Effects of Cyclic Structure of Ammonium Ions on Capacitance in Electrochemical Double Layer Supercapacitors

  • Hong, Jeehoon;Hwang, Byunghyun;Lee, Junghye;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The conductivity of the electrolyte used plays a critical role in the optimization of the performance of electrochemical double layer capacitors. However, when the difference in the conductivities of different electrolytes is not significant (only 10-20%), the conductivity has little effect on the capacitance. On the other, unlike the conductivity and viscosity of the electrolyte, the cation size directly influences the capacitance. Cyclic ions have a smaller effective radius than that of the corresponding acyclic ions because the acyclic alkyl groups have a greater number of conformational degrees of freedom, such as the rotational, bending, and stretching modes. Consequently, because of the smaller effective size of the cyclic ions, cells containing electrolytes with such ions exhibit higher capacitances than do those with their acyclic counterparts.

STUDY ON A EFFECTIVE THERMAL CONDUCTIVITY OF THE CFRP COMPOSITE STRUCTURE BY A SIMPLIFIED MODEL (모델 단순화에 의한 CFRP 복합 구조물의 유효 열전도율 추출 방법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.63-69
    • /
    • 2015
  • The thermal balance test in vacuum chamber for satellite structures is an essential step in the process of satellite development. However, it is technically and economically difficult to fully replicate the space environment by using the vacuum chamber. To overcome these limitations, the thermal analysis through a computer simulation technique has been conducted. The CFRP composite material has attracted attention as satellite structures since it has advantages of excellent mechanical properties and light weight. However, the nonuniform nature of the thermal conductivity of the CFRP structure should be noted at the step of thermal analysis of the satellite. Two different approaches are studied for the thermal analyses; a detailed numerical modeling and a simplified model expressed by an effective thermal conductivity. In this paper, the effective thermal conductivities of the CFRP composite structures are extracted from the detailed numerical results to provide a practical thermal design data for the satellite fabricated with the CFRP composite structure. Calculation results of the surface temperature and the thermal conductivities along x, y, z directions show fairly good agreements between the detailed modeling and the simplified model for all the cases studied here.

Prediction of the effective thermal conductivity of microsphere insulation

  • Jin, Lingxue;Park, Jiho;Lee, Cheonkyu;Seo, Mansu;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • Since glass microsphere has high crush strength, low density and small particle size, it becomes alternative thermal insulation material for cryogenic systems, such as storage and transportation tank for cryogenic fluids. Although many experiments have been performed to verify the effective thermal conductivity of microsphere, prediction by calculation is still inaccurate due to the complicated geometries, including wide range of powder diameter distribution and different pore sizes. The accurate effective thermal conductivity model for microsphere is discussed in this paper. There are four mechanisms which contribute to the heat transfer of the evacuated powder: gaseous conduction ($k_g$), solid conduction ($k_s$), radiation ($k_r$) and thermal contact ($k_c$). Among these components, $k_g$ and $k_s$ were calculated by Zehner and Schlunder model (1970). Other component values for $k_c$ and $k_r$, which were obtained from experimental data under high vacuum conditions were added. In this research paper, the geometry of microsphere was simplified as a homogeneous solid sphere. The calculation results were compared with previous experimental data by R. Wawryk (1988), H. S. Kim (2010) and the experiment of this paper to show good agreement within error of 46%, 4.6% and 17 % for each result.

Analytical Study on Effective Thermal Conductivity of Three-Phase Composites (3상 복합재의 등가열전도계수 예측에 대한 연구)

  • Lee, Jae-Kon;Kim, Jin-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2931-2938
    • /
    • 2011
  • Effective thermal conductivity of three-phase composites, consisting of matrix and two kinds of spherical inclusions, has been derived as an explicit form by extending modified Eshelby model (MEM) for two-phase composites. The present results are compared with those by differential effective medium model (DEMM), which are also compared with the experimental results of two- and three-phase composites in the literatures to be validated. For two-phase composites, the results by MEM are better than those by DEMM for the inclusion volume fraction smaller than 0.5. Comparisons between the results by two models and experimental results have been made for three-phase composite, resulting in that MEM predicts better than DEMM for smaller volume fraction of the inclusion having larger inclusion-to-matrix thermal conductivity ratio, but DEMM predicts better as its volume fraction increases. It has been observed through parametric study that its volume fraction is the critical factor affecting the deviation of predictions by the two models. The results by them show a good agreement with the three-phase composite proposed by Molina et al..

Measurements of In-situ Thermal Conductivity of Closed Type Ground Heat Exchanger in Korea (국내의 주요 지역에서 밀폐형 열교환기의 열전도도 측정)

  • Jung, Kye-Hoon;Lim, Hyo-Jae;Han, Ji-Won;Park, Kyung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3401-3406
    • /
    • 2007
  • This study was performed to acquire the reliable in-situ thermal conductivity of closed type ground heat exchanger used in ground source heat pump. We selected four sites(Cheonan, Daejeon, Daegu, Gwangju) which are central area of South Korea. Test results show that the effective thermal conductivities are 2.33 W/m$^{\circ}C$, 2.50 W/m$^{\circ}C$, 2.75 W/m$^{\circ}C$ and 2.86 W/m$^{\circ}C$. From this data, we can see that thermal conductivity varies about the range of 23% with the sites. Also, thermal conductivity increases up to 20% by changing grouting material from low salica sand to high one.

  • PDF