• Title/Summary/Keyword: Effective Atomic Number and Electron Density

Search Result 17, Processing Time 0.019 seconds

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code

  • Mahmoud, K.A.;Sayyed, M.I.;Tashlykov, O.L.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1835-1841
    • /
    • 2019
  • The mass attenuation coefficient ${\mu}_m$ for eight rock samples having different chemical composition was simulated using the MCNP 5 code in energy range($0.002MeV{\leq}E{\leq}10MeV$). Moreover, the ${\mu}_m$ for the studied rock samples was computed theoretically using XCOM database. The comparison between simulated and computed data for all selected rock samples showed a good agreement with differences varied between 0.01 and 8%. The highest ${\mu}_m$ was found for basalt rocks M2 and M1 and the lowest one is reported for limestone rocks Dike. The simulated values of the ${\mu}_m$ then were used to calculate other important shielding parameters such as the mean free path, effective electron density and effective atomic number. The exposure buildup factor EBF was also computed for the selected rocks with the contribution of G-P fitting parameters and the highest EBF attended by the basalt sample Sill and varied between 1.022 and 744 in the energy range between ($0.015MeV{\leq}E{\leq}15MeV$) but the lowest EBF achieved by basalt sample M2 and varied between 1.017 and 491 in the same energy range.

Feasibility study of using triple-energy CT images for improving stopping power estimation

  • Yejin Kim;Jin Sung Kim ;Seungryong Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1342-1349
    • /
    • 2023
  • The planning accuracy of charged particle therapy (CPT) is subject to the accuracy of stopping power (SP) estimation. In this study, we propose a method of deriving a pseudo-triple-energy CT (pTECT) that can be achievable in the existing dual-energy CT (DECT) systems for better SP estimation. In order to remove the direct effect of errors in CT values, relative CT values according to three scanning voltage settings were used. CT values of each tissue substitute phantom were measured to show the non-linearity of the values thereby suggesting the absolute difference and ratio of CT values as parameters for SP estimation. Electron density, effective atomic number (EAN), mean excitation energy and SP were calculated based on these parameters. Two of conventional methods were implemented and compared to the proposed pTECT method in terms of residuals, absolute error and root-mean-square-error (RMSE). The proposed method outperformed the comparison methods in every evaluation metrics. Especially, the estimation error for EAN and mean excitation using pTECT were converging to zero. In this proof-of-concept study, we showed the feasibility of using three CT values for accurate SP estimation. Our suggested pTECT method indicates potential clinical utility of spectral CT imaging for CPT planning.

Determination of X-ray and gamma-ray shielding capabilities of recycled glass derived from deteriorated silica gel

  • P. Sopapan;O. Jaiboon;R. Laopaiboon;C. Yenchai;C. Sriwunkum;S. Issarapanacheewin;T. Akharawutchayanon;K. Yubonmhat
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3441-3449
    • /
    • 2023
  • We determined the radiation shielding properties for 10CaO-xPbO-(90-x) deteriorated silica gel (DSG) glass system (x = 20, 25, 30, 35, 40, and 45 mol.%). The mass attenuation coefficient (MAC) has been estimated at photon energies of 74.23, 97.12, 122, 662, 1173, and 1332 keV using a narrow beam X-ray attenuation and transmission experiment, the XCOM program, and a PHITS simulation. The obtained MAC values were applied to estimate the half value layer (HVL), mean free path (MFP), effective atomic number, and effective electron density. Results show that the MAC value of the studied glasses ranges between 0.0549 and 1.4415 cm2/g, increases with the amount of PbO, and decreases with increasing photon energy. The HVL and MFP values decrease with increasing PbO content and increase with increasing photon energy. The recycled glass, with the addition of PbO content (20-45 mol.%), exhibited excellent radiation shielding capabilities compared to standard barite and ferrite concretes and some glass systems. Moreover, the experimental radiation shielding parameters agree with the XCOM and PHITS values. This study suggests that this new waste-recycled glass is an effective and cost-saving candidate for X-ray and gamma-ray shielding applications.

Enhancement and optimization of gamma radiation shielding by doped nano HgO into nanoscale bentonite

  • Allam, Elhassan A.;El-Sharkawy, Rehab M.;El-Taher, Atef;Shaaban, E.R.;RedaElsaman, RedaElsaman;Massoud, E. El Sayed;Mahmoud, Mohamed E.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2253-2261
    • /
    • 2022
  • In this study, nano-scaled shielding materials were assembled and fabricated by doping different weight percentages of Nano-mercuric oxide (N-HgO) into Nano-Bentonite (N-Bent) based on using (100-x% N-Bent + x% N-HgO, x = 10, 20, 30, and 40 wt %). The fabricated N-HgO/N-Bent nanocomposites were characterized by FT-IR, XRD, and SEM and evaluated to evaluate their shielding properties toward gamma radiation by using four different γ-ray energies form three point sources; 356 keV from 133Ba, 662 keV from 137Cs as well as 1173, and 1332 keV from 60Co. The γ-rays mass attenuation coefficients were plotted as a function of the doped N-HgO concentrations into N-HgO/N-Bent nanocomposites. The computed values of mass attenuation coefficients (µm), effective atomic number (Zeff) and electron density (Nel) by the as-prepared samples were found to increase, while the half value layer (HVL) and mean free path (MFP) were identified to decrease upon increasing the N-HgO contents. It was concluded also that the increase in N-HgO concentration led to a direct increase in the mass attenuation coefficient from 0.10 to 0.17 cm2/g at 356 keV and from 0.08 to 0.09 cm2/g at 662 keV. However, a slight increase was observed in the identified mass attenuation coefficients at (1172 and 1332 keV).

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S.;Tekin, H.O.;Sriwunkum, C.;Olarinoye, I.;Alalawi, Amani;Al-Buriahi, M.S.;Nutaro, T.;Tonguc, Baris T.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.282-293
    • /
    • 2021
  • This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

Comparative study on the physicochemical properties and cytocompatibility of microporous biphasic calcium phosphate ceramics as a bone graft substitute (미세다공성 Biphasic calcium phosphate ceramics의 골이식 대체재로서의 기본특성에 대한 비교연구)

  • Park, Kwang-Bum;Park, Jin-Woo;Ahn, Hyun-Uk;Yang, Dong-Jun;Choi, Seok-Kyu;Jang, II-Sung;Yeo, Shin-Il;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.4
    • /
    • pp.797-808
    • /
    • 2006
  • Objective : The purpose of this study was to evaluate the physicochemical properties and cytocompatibility of microporous, spherical biphasic calcium phosphate(BCP) ceramics with a 60/40 $hydroxyapatite/{\beta}$ -tricalcium phosphate weight ratio for application as a bone graft substitute. Materials and Methods : Microporous, spherical BCP granules(MGSB) were prepared and their basic characteristics were compared with commercially available BCP(MBCP; Biomatlante, France) and deproteinized bovine bone mineral(Bio-Oss; GBistlich-Pharma, Switzerland, BBP; Oscotec. Korea), Their physicochemical properties were evaluated by scanning electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometer, and Brunauer-Emmett-Teller method. Cell viability and proliferation of MC3T3-El cells on different graft materials were evaluated. Results : MGSB granules showed a chemical composition and crystallinity similar with those in MBCP, they showed surface structure characteristic of three dimensionally, well-interconnected micropores. The results of MTT assay showed increases in cell viablity with increasing incubation times. At 4d of incubation, MGSB, MBCP and BBP showed similar values in optical density, but Bio-Oss exhibited significantly lower optical density compared to other bone substitutes(p <0,05). MGSB showed significantly greater cell number compared to other bone substitutes at 3, 5, and 7d of incubation(p <0,05), which were similar with those in polystyrene culture plates. Conclusion: These results indicated the suitable physicochemical properties of MGSB granules for application as an effective bone graft substitute. which provided compatible environment for osteoblast cell growth. However, further detailed studies are needed to confirm its biological effects on bone formation in vivo.