• Title/Summary/Keyword: Effect of Temperature

Search Result 20,149, Processing Time 0.059 seconds

Supercritical Water Oxidation of Anionic Exchange Resin (초임계수 산화를 이용한 음이온교환수지 분해)

  • Han, Joo-Hee;Han, Kee-Do;Do, Seung-Hoe;Kim, Kyeong-Sook;Son, Soon-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.549-557
    • /
    • 2006
  • The characteristics of supercritical water oxidation have been studied to decompose the waste anionic exchange resins which were produced from a power plant. The waste resins from a power plant were mixture of anionic and cationic exchange resins. The waste anionic exchange resins had been separated from the waste resins using a solid-liquid fluidized bed. It was confirmed that the cationic exchange resins were not included in the separated anionic exchange resins by the elemental and thermogravimetric analysis. A slurry of anionic exchange resins which could be fed continuously to a supercritical water oxidation apparatus by a high pressure pump was prepared using a wet ball mill. Although the COD of liquid effluent had been reduced more than 99.9% at 25.0 MPa and $500^{\circ}C$ within 2 min, the total nitrogen content was reduced only 41%. The addition of nitric acid to the slurry could reduce the total nitrogen content in treated water. The central composite design as a statistical desist of experiments had been applied to optimize the conditions of decomposing anionic resin slurry by means of the COD and total nitrogen contents in treated waters as the key process output variables. The COD values of treated waters had been reduced sufficiently to $99.9{\sim}100%$ af the reaction conditions of $500{\sim}540^{\circ}C$, 25.0 MPa within 2 min. The effects of temperature and nitric acid concentration on COD were not significant. However, the effect of nitric acid concentration on the total nitrogen was found to be significant. The regression equation for the total nitrogen had been obtained with nitric acid concentration and the coefficient of determination($r^2$) was 95.8%.

Pharmacological Activity of Chaga Mushroom on Extraction Conditions and Immunostimulating Polysaccharide (추출조건에 따른 차가버섯 생리활성 및 면역활성 다당)

  • Baek, Gil-Hun;Jeong, Heon-Sang;Kim, Hoon;Yoon, Taek-Joon;Suh, Hyung-Joo;Yu, Kwang-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1378-1387
    • /
    • 2012
  • To investigate the pharmacological activity of chaga mushroom (Inonotus obliquus) on extraction conditions, chaga was extracted using water (reflux at $50^{\circ}C$, decoction over $90^{\circ}C$, pressure at $121^{\circ}C$) or ethanol (reflux at 50, 70, or $90^{\circ}C$). When water extract was further fractionated into crude polysaccharide (IO-CP), yields of IO-CP (4.8~16.8%) were higher than those of ethanolic extracts (IO-E, 1.9~2.7%) at increased temperature. For antioxidant activity, crude polysaccharide (IO-CP-121) obtained by pressurized extraction showed the highest polyphenolic and flavonoid contents (35.10 mg TAE/g and 18.48 mg QE/g, respectively) as well as DPPH and ABTS free radical scavenging activities (26.08 and 27.99 mg AEAC/100 mg, respectively). Meanwhile, IO-CP-D (decoction) and IO-CP-50 (reflux) had more potent mitogenic effects (2.10- and 1.95-fold of saline control at 100 ${\mu}g/mL$) as well as intestinal immune system modulating activities (6.30- and 5.74-fold) compared to IO-CP-121, whereas ethanolic extracts showed no activity. Although no IO-CP showed cytotoxicity against RAW 264.7 cells at 0.1 mg/mL, IO-CP-121 significantly inhibited TNF-${\alpha}$ and NO production as pro-inflammatory factors in LPS-stimulated RAW 264.7 cells (29.2 and 63.5%, respectively). Ethanolic extracts also showed no cytotoxicity at 0.1 mg/mL, whereas inhibition of TNF-${\alpha}$ and NO production was significantly low compared to that of IO-CP-121. In addition, active IO-CP-D was further fractionated into an unadsorbed (IO-CP-I) and seven adsorbed fractions (IO-CP-II~VIII) by DEAE-Sepharose CL-6B column chromatography in order to isolate immunostimulating polysaccharide. IO-CP-II showed the most potent mitogenic effect and macrophage stimulating activity (4.51- and 1.64-fold, respectively). IO-CP-II mainly contained neutral sugars (61.86%) in addition to a small amount of uronic acid (2.96%), and component sugar analysis showed that IO-CP-II consisted mainly of Glc, Gal, and Man (molar ratio of 1.00:0.55:0.31). Therefore, extraction conditions affect the physiological activity of chaga, and immunostimulating polysaccharide fractionated from chaga by decoction is composed mainly of neutral sugars.

Effect of Packaging Systems with High CO2 Treatment on the Quality Changes of Fig (Ficus carica L) during Storage (저장 중 무화과(Ficus carica L) 선도유지를 위한 고농도 이산화탄소 처리된 포장 시스템 적용 연구)

  • Kim, Jung-Soo;Chung, Dae-Sung;Lee, Youn Suk
    • Food Science and Preservation
    • /
    • v.19 no.6
    • /
    • pp.799-806
    • /
    • 2012
  • This experiment was conducted to establish the optimum conditions for high $CO_2$ gas treatment in combination with a proper gas-permeable packaging film to maintain the quality of fig fruit (Ficus carica L). Among the fig fruits with different high $CO_2$ treatments, the quality change was most effectively controlled during storage in the 70%-$CO_2$-treated fig fruit. Harvested fig fruit was packaged using microperforated oriented polypropylene (MP) film to maintain the optimum gas concentrations in the headspace of packaging for the modified-atmosphere system. MP film had an oxygen transmission rate of about $10,295cm^3/m^2$/day/atm at $25^{\circ}C$. The weight loss, firmness, soluble-solid content (SSC), acidity (pH), skin color (Hunter L, a, b), and decay ratio of the fig fruits were monitored during storage at 5 and $25^{\circ}C$. The results of this study showed that the OPP film, OPP film + 70% $CO_2$, and MP film+70% $CO_2$ were highly effective in reducing the loss rate, firmness and decay occurrence rate of fig fruits that were packaged with them during storage. In the case of using treatments with packages of OPP film and OPP film+70% $CO_2$, however, adverse effects like package bursting or physiological injury of the fig may occur due to the gas pressure or long exposure to $CO_2$. Therefore, the results indicated that MP film containing 70% $CO_2$ can be used as an effective treatment to extend the freshness of fig fruits for storage at a proper low temperature.

Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea (부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성)

  • Lee, Minji;Seo, Jin Young;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Since the construction of a dike in 1983, the water quality in the Bunam Lake has continued to deteriorate due to algal bloom caused by agricultural nutrient loading. Therefore, we evaluated the change in water quality and phytoplankton ecological characteristics in Bunam Lake and Cheonsu Bay, Korea. Water temperature, salinity, dissolved oxygen, chemical oxygen demand (COD), chlorophyll, and phytoplankton community were surveyed in April during the dry season and in July during the rainy reason. As a result, during the dry period, phytoplankton proliferated greatly and stagnated in the Bunam Lake while a very high population of cyanobacteria Oscillatoria spp. (8.61×107 cells L-1) was recorded. Most of the nutrients, except, nitrate and nitrite, were consumed due to the large growth of phytoplankton. However, during the rainy period, concentrations of ammonia, phosphate, silicate, nitrate, and nitrite, were very high towards the upper station due to the inflow of fresh water. Cyanobacteria Oscillatoria and Microcystis spp. were dominant in the Bunam Lake during the rainy period. Even in the Cheonsu Bay, cyanobacteria dominated due to the effect of discharge and diatoms, such as, Chaetoceros spp. and Eucampia zodiacus, which also proliferated significantly due to increased levels of nutrients. Since the eutrophication index was above 1 in Bunam Lake, it was classified as eutrophic water and the Cheonsu Bay was classified as eutrophic water only during the rainy season. In addition, a stagnant seawater-derived hypoxia water mass was observed at a depth of8m in the Bunam Lake adjacent to the tide embankment and the COD concentration reached 206 mg L-1 in the bottom layer at B3. Based on this result, it is considered that the water quality will continue to deteriorate if organic matters settle due to continuous inflow of nutrients and growth of organisms while the bottom water mass is stagnant.

Forecasting Leaf Mold and Gray Leaf Spot Incidence in Tomato and Fungicide Spray Scheduling (토마토 재배에서 점무늬병 및 잎곰팡이병 발생 예측 및 방제력 연구)

  • Lee, Mun Haeng
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.376-383
    • /
    • 2022
  • The current study, which consisted of two independent studies (laboratory and greenhouse), was carried out to project the hypothesis fungi-spray scheduling for leaf mold and gray leaf spot in tomato, as well as to evaluate the effect of temperature and leaf wet duration on the effectiveness of different fungicides against these diseases. In the first experiment, tomato leaves were infected with 1 × 104 conidia·mL-1 and put in a dew chamber for 0 to 18 hours at 10 to 25℃ (Fulvia fulva) and 10 to 30℃ (Stemphylium lycopersici). In farm study, tomato plants were treated for 240 hours with diluted (1,000 times) 30% trimidazole, 50% polyoxin B, and 40% iminoctadine tris (Belkut) for protection of leaf mold, and 10% etridiazole + 55% thiophanate-methyl (Gajiran), and 15% tribasic copper sulfate (Sebinna) for protection of gray leaf spot. In laboratory test, leaf condensation on the leaves of tomato plants were emerged after 9 hrs. of incubation. In conclusion, the incidence degree of leaf mold and gray leaf spot disease on tomato plants shows that it is very closely related to formation of leaf condensation, therefore the incidence of leaf mold was greater at 20 and 15℃, while 25 and 20℃ enhanced the incidence of gray leaf spot. The incidence of leaf mold and gray leaf spot developed 20 days after inoculation, and the latency period was estimated to be 14-15 days. Trihumin fungicide had the maximum effectiveness up to 168 hours of fungicides at 12 hours of wet duration in leaf mold, whereas Gajiran fungicide had the highest control (93%) against gray leaf spot up to 144 hours. All the chemicals showed an around 30-50% decrease in effectiveness after 240 hours of treatment. The model predictions in present study could be help in timely, effective and ecofriendly management of leaf mold disease in tomato.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy

Changes of Chlorophyll and SOD-like Activities of Chinese Chives Dehydrated at Different Heat Treatments (부추의 건조 온도 조건별 클로로필, Superoxide Dismutase 유사활성의 변화)

  • Kwak, Yeon-Ju;Kim, Jong-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.879-884
    • /
    • 2009
  • Allium tuberosum Rotter (Liliaceae, Chinese chives) is a perennial herb of which leaves are used for food. This study investigated the effect of pretreatment on quality of dehydrated Chinese chives. Chinese chives was blanched at $80^{\circ}C$ for 20 sec, followed by drying at $70^{\circ}C$, $80^{\circ}C$, $100^{\circ}C$, or drying at $100^{\circ}C$ for 30 min and subsequent drying at $70^{\circ}C$, or $100^{\circ}C$ for 60 min and subsequent drying at $70^{\circ}C$. Optimum drying temperature and time was $100^{\circ}C$ for 30 min and subsequent drying at $70^{\circ}C$, or $100^{\circ}C$ for 60 min and subsequent drying at $70^{\circ}C$. These conditions were shortened time for dehydration and showed smaller decrease than others in Hunter color L, a, b. Dehydrated Chinese chives showed a constant decrease in greenness with storage, probably due to destruction of chlorophyll by light. In the measurement of Hunter color L, a, b, these conditions showed smaller decrease than others in Hunter color for 15 week storage. Chlorophyll content and SOD (superoxide dismutase)-like activity in that condition was higher than others. It was assumed that a phenolic compound that forms its thermostable activity. The fitness of drying models was conducted in order to explain reducing chlorophyll loss and SOD (superoxide dismutase)-like activity loss. Based upon the chlorophyll content, SOD-like activity, and retention of green color of the vegetable, optimum drying conditions was $100^{\circ}C$ for 30 min followed by $100^{\circ}C$ for 30 min and subsequent drying at $70^{\circ}C$, or $100^{\circ}C$ for 60 min and subsequent drying at $70^{\circ}C$.

Effect of Transplanting Date on the Growth, Yield, and Occurrence of Viviparity in Floury Endosperm Rice Cultivars in the Chungbuk Province (충북지역 쌀가루용 벼 품종의 이앙시기가 생육, 수량 및 수발아 발생에 미치는 영향)

  • Lee, Chae-Young;Choi, Ye-Seul;Lee, Hee-Du;Jeong, Taek-Gu;Kim, Ik-Jei;Kim, Chung-Kon;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.284-293
    • /
    • 2020
  • Rice consumption in Korea has been decreasing as the eating habits of the Korean people have diversified with rapid economic growth. Recently, floury endosperm rice cultivars were developed to boost rice consumption and replace wheat flour consumption with rice flour, which is vulnerable to viviparity under wet weather during the grain-filling stage because of its loosely packed starch granule structures. To overcome this limitation, it is necessary to find a suitable rice transplanting date to produce high-quality rice flour by altering the heading ecology type and changing the cultivation time by region. We examined four floury endosperm rice cultivars (FERC) in the Cheongju (central plain area) and Boeun (mid-mountainous area) regions of Korea from 2017 to 2019. Of the FERCs, the mid-late maturing types (MMT) Seolgaeng (SG), Hangaru (HGR), and Shingil (SGL) exhibited high yield and yield components after transplanting May 30 in both regions; the early maturing type (EMT) Garumi 2 (GRM2) also exhibited high yield after transplanting June 20 in Cheongju. In addition, MMTs showed the same tendency as the characteristics shown in Cheongju when grown in the Boeun region, and EMT displayed high yield and yield components after transplanting June 10. The FERCs could easily present pre-harvest sprouting in the rainy season during the grain-filling stage after 20 days post-heading because the mean temperature and frequency of more three-day rainfalls have increased over the last 5 years from the previous annual averages. Viviparity of HGR and GRM2 decreased as the transplanting date was delayed, with decreases of 2.3%-4.6% in HGR and 11.9%-23.1% in GRM2 according to the region. SGL was generally resistant to viviparity because of the Tongil type. To minimize pre-harvest sprouting and produce high yield of rice flour in the Chungbuk province, the most suitable transplanting time was the end of May in MMT and the middle and end of June in EMT.

Effect of Mixture Media of Red Clay and Peatmoss on Quality and Drainage Solution in Hydroponics of Solanum lycopersicum 'Mascara' (황토와 피트모스 혼합배지가 수경재배 토마토 'Mascara'의 품질과 배액에 미치는 영향)

  • Na, Taek Sang;Choi, Kyong Ju;Yoon, Bong Gi;Cho, Myoung Soo;Kim, Hee Gon;Kim, Hyo Joong;Son, Dong Mo;Yoo, Yong Kweon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • This study was conducted to examine the effects of coir, peatmoss, and red clay (20%) + peatmoss (80%) media on quality and drainage solution in hydroponics of Solanum lycopersicum 'Mascara'. The tomato seedlings were planted in media on 29 April, and supplied with Yamazaki's tomato solution of EC $2.0dS{\cdot}m^{-1}$ and pH 6.5. Tomato fruits were harvested from 13 June to 24 August. Drainage amount decresed when solar radiation and air temperature were high. However, drainage amount were not different among coir, peatmoss, and red clay + peatmoss media. The EC of drainage in red clay + peatmoss medium was higher than that in other media during the cultivation period. Also, soild state and available moisture content was more in red clay + peatmoss mediun than in coir or peatmoss media. The soluble solids of tomato fruits increased by 10~17% at $5.5^{\circ}Brix$ in red clay+peatmoss medium compared with $5.0{\sim}4.7^{\circ}Brix$ in coir or peatmoss media. Also, the acidity of fruits was the highest to 0.66% in red clay + peatmoss medium than the others. The total yield of fruits in red clay + peatmoss medium increased significantly by 9.1% at 8,428 kg than at 7,725 kg in peatmoss medium, and ratio of marketable yield was higher than the other media. Therefore, red clay (20%) + peat moss (80%) medium is recommend for growth and quality of fruits in hydroponics of Solanum lycopersicum 'Mascara'.

Effect of Germination on the Quality and Amino acid Composition of Soymilk (대두발아(大豆發芽)가 대두유(大豆乳)의 품질(品質) 및 아미노산(酸) 조성(組成)에 미치는 영향)

  • Kim, Woo-Jung;Oh, Hoon-Il;Oh, Myung-Won;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 1983
  • Changes in the quality and amino acid composition of soymilk prepared from soaked and germinated soybeans were investigated. Soybeans were soaked in water for 3 hrs and germinated at $18{\pm}1^{\circ}C$ for 5 days followed by water extraction at room temperature, and then the soymilk was boiled for 30 min. The initial yields of total solid and protein after soaking were 80.7% and 88.6%, respectively and decreased slowly during germination. A slow decrease in lipids and a rapid reduction in total sugar content were found during germination. The change in protein fraction content of soymilk showed an initial increase followed by a gradual decrease. The intrinsic viscosity increased rapidly after 3 days of germination to maximum value at 4th day, then decreased. The amino acid composition of protein fraction of soymilk showed little change while that of nonprotein fraction changed significantly. After 4 days of germination, aspartic acid and alanine increased more than twice, and methionine and tyrosine decreased to half of their initial composition in soymilk prepared from soaked soybean.

  • PDF