• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.025 seconds

Development of the Liberal Arts Course for Informatics, Mathematics, and Science Convergence Education using No Code Data Analysis Tool (노 코드 데이터 분석 도구를 활용한 정보·수학·과학 융합교육 교양 강좌 개발)

  • Soyul Yi;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.447-448
    • /
    • 2023
  • 본 연구에서는 비전공자들을 위한 디지털 교육을 위하여 노 코드 프로그램을 활용한 정보, 수학, 과학 융합교육 교양 강좌를 개발하였다. 노 코드 프로그램으로는 오렌지3 데이터 마이닝을 선정하였는데, 이는 데이터 분석, 시각화, 머신러닝 모델의 활용이 용이하다는 강점을 가지고 있다. 또한, 산업환경 변화에 대비하는 핵심 교과인 과학, 수학, 정보의 중요성과 데이터 분석과의 밀접성을 고려하여 교육 내용을 융합할 수 있도록 선정하였다. 개발된 교육 프로그램은 8인이 전문가 검토 결과 내용 타당도가 확보되었음을 확인할 수 있었다. 추후 연구에서는 이 강좌를 대학의 학부생에게 적용하여 그 효과성을 확인해 보고자 한다.

  • PDF

Design and Implementation of Analysis System for Answer Dataset with Data Mining (데이터 마이닝을 이용한 시험 응답데이터 분석시스템 설계 및 구현)

  • Kwak, Eun-Young;Kim, Hyeoncheol
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • In this paper, we introduce an analysis system for answer dataset by using a data mining method. We analyze students' answer data collected from a test including multiple choice question items, and find associations between the items. Analysis of evaluation results based on our system will not only provide correct information on students' achievement levels but also provides a basis for modifying weaknesses of the evaluation procedures, question items, or teaching/learning procedures. Furthermore, it will enable us to improve the quality of question items for future use so that we can secure itemsets of high quality.

  • PDF

Development of Hypertension Predictive Model (고혈압 발생 예측 모형 개발)

  • Yong, Wang-Sik;Park, Il-Su;Kang, Sung-Hong;Kim, Won-Joong;Kim, Kong-Hyun;Kim, Kwang-Kee;Park, No-Yai
    • Korean Journal of Health Education and Promotion
    • /
    • v.23 no.4
    • /
    • pp.13-28
    • /
    • 2006
  • Objectives: This study used the characteristics of the knowledge discovery and data mining algorithms to develop hypertension predictive model for hypertension management using the Korea National Health Insurance Corporation database(the insureds' screening and health care benefit data). Methods: This study validated the predictive power of data mining algorithms by comparing the performance of logistic regression, decision tree, and ensemble technique. On the basis of internal and external validation, it was found that the model performance of logistic regression method was the best among the above three techniques. Results: Major results of logistic regression analysis suggested that the probability of hypertension was: - lower for the female(compared with the male)(OR=0.834) - higher for the persons whose ages were 60 or above(compared with below 40)(OR=4.628) - higher for obese persons(compared with normal persons)(OR= 2.103) - higher for the persons with high level of glucose(compared with normal persons)(OR=1.086) - higher for the persons who had family history of hypertension(compared with the persons who had not)(OR=1.512) - higher for the persons who periodically drank alcohol(compared with the persons who did not)$(OR=1.037{\sim}1.291)$ Conclusions: This study produced several factors affecting the outbreak of hypertension using screening. It is considered to be a contributing factor towards the nation's building of a Hypertension Management System in the near future by bringing forth representative results on the rise and care of hypertension.

A Study on the CRM Application for Activation of Cyber Education (사이버교육활성화를 위한 CRM방법의 적용에 관한 연구)

  • 김한신;이공섭;이창호
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • Nowdays cyber education based on the internet is actively developed. But the management of the customers in the cyber education field is not enough. Then, in this paper, we provide the learner with the proposals of lectures to be extremely matched by analyzing the learning capacity and the greatest concern of him(her) using the methods of data mining, such as RFM, prediction, slickness, association rule, classification, and so on.

The Impact of Product Review Usefulness on the Digital Market Consumers Distribution

  • Seung-Yong LEE;Seung-wha (Andy) CHUNG;Sun-Ju PARK
    • Journal of Distribution Science
    • /
    • v.22 no.3
    • /
    • pp.113-124
    • /
    • 2024
  • Purpose: This study is a quantitative study and analyzes the effect of evaluating the extreme and usefulness of product reviews on sales performance by using text mining techniques based on product review big data. We investigate whether the perceived helpfulness of product reviews serves as a mediating factor in the impact of product review extremity on sales performance. Research design, data and methodology: The analysis emphasizes customer interaction factors associated with both product review helpfulness and sales performance. Out of the 8.26 million Amazon product reviews in the book category collected by He & McAuley (2016), text mining using natural language processing methodology was performed on 300,000 product reviews, and the hypothesis was verified through hierarchical regression analysis. Results: The extremity of product reviews exhibited a negative impact on the evaluation of helpfulness. And the helpfulness played a mediating role between the extremity of product reviews and sales performance. Conclusion: Increased inclusion of extreme content in the product review's text correlates with a diminished evaluation of helpfulness. The evaluation of helpfulness exerts a negative mediating effect on sales performance. This study offers empirical insights for digital market distributors and sellers, contributing to the research field related to product reviews based on review ratings.

Design of a Sentiment Analysis System to Prevent School Violence and Student's Suicide (학교폭력과 자살사고를 예방하기 위한 감성분석 시스템의 설계)

  • Kim, YoungTaek
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • One of the problems with current youth generations is increasing rate of violence and suicide in their school lives, and this study aims at the design of a sentiment analysis system to prevent suicide by uising big data process. The main issues of the design are economical implementation, easy and fast processing for the users, so, the open source Hadoop system with MapReduce algorithm is used on the HDFS(Hadoop Distributed File System) for the experimentation. This study uses word count method to do the sentiment analysis with informal data on some sns communications concerning a kinds of violent words, in terms of text mining to avoid some expensive and complex statistical analysis methods.

  • PDF

Analysis of Online Behavior and Prediction of Learning Performance in Blended Learning Environments

  • JO, Il-Hyun;PARK, Yeonjeong;KIM, Jeonghyun;SONG, Jongwoo
    • Educational Technology International
    • /
    • v.15 no.2
    • /
    • pp.71-88
    • /
    • 2014
  • A variety of studies to predict students' performance have been conducted since educational data such as web-log files traced from Learning Management System (LMS) are increasingly used to analyze students' learning behaviors. However, it is still challenging to predict students' learning achievement in blended learning environment where online and offline learning are combined. In higher education, diverse cases of blended learning can be formed from simple use of LMS for administrative purposes to full usages of functions in LMS for online distance learning class. As a result, a generalized model to predict students' academic success does not fulfill diverse cases of blended learning. This study compares two blended learning classes with each prediction model. The first blended class which involves online discussion-based learning revealed a linear regression model, which explained 70% of the variance in total score through six variables including total log-in time, log-in frequencies, log-in regularities, visits on boards, visits on repositories, and the number of postings. However, the second case, a lecture-based class providing regular basis online lecture notes in Moodle show weaker results from the same linear regression model mainly due to non-linearity of variables. To investigate the non-linear relations between online activities and total score, RF (Random Forest) was utilized. The results indicate that there are different set of important variables for the two distinctive types of blended learning cases. Results suggest that the prediction models and data-mining technique should be based on the considerations of diverse pedagogical characteristics of blended learning classes.

Education Data and Analytics: A Review of the State of the Art (교육 데이터와 분석 기법: 사례 연구를 중심으로)

  • Kwon, YoungOk
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.73-81
    • /
    • 2019
  • With the increase of education data, there have been many studies on the application of various analytics to improve students' performance and educational environments over the past decade. This paper first introduces the cases of universities that successfully utilize the analysis results and, more specifically, examines which data and analytical techniques are used for each analysis purpose. Based on the findings, the limitations of the current analytics and the direction of future analysis are discussed.

  • PDF

Efficient Assessment and Recommendations System using IRT and Data Mining (IRT와 데이터 마이닝을 이용한 효과적인 평가 및 추천시스템)

  • Kim Cheon-Shik;Jung Myung-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.109-117
    • /
    • 2006
  • E-learning method has many advantages that supplement the shortfalls of offline education. For this reason, today's offline educational institutions adopted the online education technique to improve learning effectiveness. Recently, general universities have partially adopted online learning. As a result, a study is searching for ways to improve the effectiveness of education by copying the merits of the existing offline education onto the online education. Thus a proper evaluation of learners and a feedback provision are considered necessary to improve the effectiveness of online learning. This study aims to suggest a model that will improve learning efficiency by adapting the advantages of offline education to online learning. To evaluate properly, this study conducted Item Response Test to examine the learners and finally ensure them an adequate level of education. Also, this study suggested a way to enhance learning efficiency by finding out each learner's study habits and to address the weaknesses of online learning. It is expected that the suggested method would be helpful in bettering learner's ability to study in school environment.

  • PDF

Analysis of periodontal health related factors by using data mining method (데이터 마이닝 기법을 이용한 치주건강 관련요인 분석연구)

  • Park, Hee-Jung;Lee, Jun Hyup;Kim, Tae-Il
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.14 no.3
    • /
    • pp.15-26
    • /
    • 2013
  • Objectives: The purpose of this study was to evaluate self-reported symptoms of periodontal diseases. We performed a comprehensive analysis of periodontal health related factors. Methods: 581 volunteers representing a broad range of age from 20 to 65 were recruited from Seoul and Gyeonggi provinces. They participated in a self-administered survey of which the results were analyzed through the decision tree analysis using the data mining program. Results: 67% of the participants reported 'bad breath,' whereas 13.9% of participants reported 'toothache'. The decision analysis revealed that age was the most determining factor of adult periodontal health. Participants in 20s with a profound understanding of their periodontal health status exhibited a low vulnerability to periodontal diseases, whereas those lacking the awareness were more susceptible to the diseases. However, other participants in 30s and older showed a higher vulnerability to periodontal illness than those in 20s, whether or not they had suffered from chronic diseases. Conclusions: In order to effectively prevent periodontal diseases, an age-appropriate clinical approach will be necessary. For the younger age group it will be crucial to enhance the self-awareness of their current oral health status. On the other hand, those in 30s and older will need to pay a close attention to the prevention of chronic periodontal disease.

  • PDF