• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.025 seconds

A Forecast Model on High School Students' Suicidal Ideation: The Investigation Risk Factors and Protective Factors Using Data Mining (고등학생의 자살사고 예측모형 : 데이터마이닝을 적용한 위험요인과 보호요인의 탐색)

  • 이주리
    • Journal of the Korean Home Economics Association
    • /
    • v.47 no.5
    • /
    • pp.67-77
    • /
    • 2009
  • This study examined risk factors and protective factors in high school students’ suicidal ideation. Participants were 2000 adolescents from the KEEP(Korean Education and Employment Panel). Data mining decision tree model revealed that: (1) Irrespective of sex, the most important predictor was father-adolescent relationship. (2) Positive mother-adolescent relationship was predicted as protective factor in condition of negative father-adolescent relationship. (3) Family activities was predicted as risk factor in condition of negative mother-adolescent relationship under the circumstances with negative father-adolescent relationship. (4) Low self-evaluation was predicted as risk factor in condition of serious agony about personality under the circumstances with positive father-adolescent relationship.

Analysis of Traffic Card Big Data by Hadoop and Sequential Mining Technique (하둡과 순차패턴 마이닝 기술을 통한 교통카드 빅데이터 분석)

  • Kim, Woosaeng;Kim, Yong Hoon;Park, Hee-Sung;Park, Jin-Kyu
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.187-196
    • /
    • 2017
  • It is urgent to prepare countermeasures for traffic congestion problems of Korea's metropolitan area where central functions such as economic, social, cultural, and education are excessively concentrated. Most users of public transportation in metropolitan areas including Seoul use the traffic cards. If various information is extracted from traffic big data produced by the traffic cards, they can provide basic data for transport policies, land usages, or facility plans. Therefore, in this study, we extract valuable information such as the subway passengers' frequent travel patterns from the big traffic data provided by the Seoul Metropolitan Government Big Data Campus. For this, we use a Hadoop (High-Availability Distributed Object-Oriented Platform) to preprocess the big data and store it into a Mongo database in order to analyze it by a sequential pattern data mining technique. Since we analysis the actual big data, that is, the traffic cards' data provided by the Seoul Metropolitan Government Big Data Campus, the analyzed results can be used as an important referenced data when the Seoul government makes a plan about the metropolitan traffic policies.

Exploring Information Ethics Issues based on Text Mining using Big Data from Web of Science (Web of Science 빅데이터를 활용한 텍스트 마이닝 기반의 정보윤리 이슈 탐색)

  • Kim, Han Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study is to explore information ethics issues based on academic big data from Web of Science (WoS) and to provide implications for information ethics education in informatics subject. To this end, 318 published papers from WoS related to information ethics were text mined. Specifically, this paper analyzed the frequency of key-words(TF, DF, TF-IDF), information ethics issues using topic modeling, and frequency of appearances by year for each issue. This paper used 'tm', 'topicmodel' package of R for text mining. The main results are as follows. First, this paper confirmed that the words 'digital', 'student', 'software', and 'privacy' were the main key-words through TF-IDF. Second, the topic modeling analysis showed 8 issues such as 'Professional value', 'Cyber-bullying', 'AI and Social Impact' et al., and the proportion of 'Professional value' and 'Cyber-bullying' was relatively high. This study discussed the implications for information ethics education in Korea based on the results of this analysis.

Problems of Big Data Analysis Education and Their Solutions (빅데이터 분석 교육의 문제점과 개선 방안 -학생 과제 보고서를 중심으로)

  • Choi, Do-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.12
    • /
    • pp.265-274
    • /
    • 2017
  • This paper examines the problems of big data analysis education and suggests ways to solve them. Big data is a trend that the characteristic of big data is evolving from V3 to V5. For this reason, big data analysis education must take V5 into account. Because increased uncertainty can increase the risk of data analysis, internal and external structured/semi-structured data as well as disturbance factors should be analyzed to improve the reliability of the data. And when using opinion mining, error that is easy to perceive is variability and veracity. The veracity of the data can be increased when data analysis is performed against uncertain situations created by various variables and options. It is the node analysis of the textom(텍스톰) and NodeXL that students and researchers mainly use in the analysis of the association network. Social network analysis should be able to get meaningful results and predict future by analyzing the current situation based on dark data gained.

Identifying research trends in the emergency medical technician field using topic modeling (토픽모델링을 활용한 응급구조사 관련 연구동향)

  • Lee, Jung Eun;Kim, Moo-Hyun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.26 no.2
    • /
    • pp.19-35
    • /
    • 2022
  • Purpose: This study aimed to identify research topics in the emergency medical technician (EMT) field and examine research trends. Methods: In this study, 261 research papers published between January 2000 and May 2022 were collected, and EMT research topics and trends were analyzed using topic modeling techniques. This study used a text mining technique and was conducted using data collection flow, keyword preprocessing, and analysis. Keyword preprocessing and data analysis were done with the RStudio Version 4.0.0 program. Results: Keywords were derived through topic modeling analysis, and eight topics were ultimately identified: patient treatment, various roles, the performance of duties, cardiopulmonary resuscitation, triage systems, job stress, disaster management, and education programs. Conclusion: Based on the research results, it is believed that a study on the development and application of education programs that can successfully increase the emergency care capabilities of EMTs is needed.

Ubiquitous Data Mining Using Hybrid Support Vector Machine (변형된 Support Vector Machine을 이용한 유비쿼터스 데이터 마이닝)

  • Jun Sung-Hae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.312-317
    • /
    • 2005
  • Ubiquitous computing has had an effect to politics, economics, society, culture, education and so forth. For effective management of huge Ubiquitous networks environment, various computers which are connected to networks has to decide automatic optimum with intelligence. Currently in many areas, data mining has been used effectively to construct intelligent systems. We proposed a hybrid support vector machine for Ubiquitous data mining which realized intelligent Ubiquitous computing environment. Many data were collected by sensor networks in Ubiquitous computing environment. There are many noises in these data. The aim of proposed method was to eliminate noises from stream data according to sensor networks. In experiment, we verified the performance of our proposed method by simulation data for Ubiquitous sensor networks.

Critical Assessment on Performance Management Systems for Health and Fitness Club using Balanced Score Card

  • Samina Saleem;Hussain Saleem;Abida Siddiqui;Umer Sheikh;Muhammad Asim;Jamshed Butt;Ali Muhammad Aslam
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.177-185
    • /
    • 2024
  • Web science, a general discipline of learning is presently at high demand of expertise with ideas to develop software-based WebApps and MobileApps to facilitate user or customer demand e.g. shopping etc. electronically with the access at their smartphones benefitting the business enterprise as well. A worldwide-computerized reservation network is used as a single point of access for reserving airline seats, hotel rooms, rental cars, and other travel related items directly or via web-based travel agents or via online reservation sites with the advent of social-web, e-commerce, e-business, from anywhere-on-earth (AoE). This results in the accumulation of large and diverse distributed databases known as big data. This paper describes a novel intelligent web-based electronic booking framework for e-business with distributed computing and data mining support with the detail of e-business system flow for e-Booking application architecture design using the approaches for distributed computing and data mining tools support. Further, the importance of business intelligence and data analytics with issues and challenges are also discussed.

Data Mining-Based Performance Prediction Technology of Geothermal Heat Pump System (지열 히트펌프 시스템의 데이터 마이닝 기반 성능 예측 기술)

  • Hwang, Min Hye;Park, Myung Kyu;Jun, In Ki;Sohn, Byonghu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.27-34
    • /
    • 2016
  • This preliminary study investigated data mining-based methods to assess and predict the performance of geothermal heat pump(GHP) system. Data mining is a key process of the knowledge discovery in database (KDD), which includes five steps: 1) Selection; 2) Pre-processing; 3) Transformation; 4) Analysis(data mining); and 5) Interpretation/Evaluation. We used two analysis models, categorical and numerical decision tree models to ascertain the patterns of performance(COP) and electrical consumption of the GHP system. Prior to applying the decision tree models, we statistically analyzed measurement database to determine the effect of sampling intervals on the system performance. Analysis results showed that 10-min sampling data for the performance analysis had highest accuracy of 97.7% over the actual dataset of the GHP system.

Research on Jeon-gyeong Based on Big Data (빅데이터를 기반으로 한 『전경(典經)』 연구)

  • Jang Young-chang;Kim Dug-sam
    • Journal of the Daesoon Academy of Sciences
    • /
    • v.50
    • /
    • pp.69-98
    • /
    • 2024
  • The development of artificial intelligence poses a greater threat to humanity than any other ideology or material phenomenon that has changed human society and culture so far. Based on these changes, the proper direction for research on Daesoon Thought should be determined such that education in the current digital age approached skillfully and the path forward is made more apparent. First, the digitization of Daesoon Thought has accumulated greatly in recent years, and these archives are accessed through data mining which can be activated to find data, specify meanings and patterns, and reveal significance and values. Second, by applying the results of data mining to Daesoon Thought education, the causal, correlational, and response relationships between events, characters, and relics can be studied. Daesoon Thought education that demonstrates imagination should be provided through the 'creation of personal networks,' the 'creation of a timeline of events,' and the 'creation of an electronic cultural map of where those events occurred.' Third, digital archives should not only be focused on structured materials such as newsletters and papers. Ideas about data mining and data visualization should be actively developed and research should be expanded toward data science. In addition, the creation of a common platform for digital Daesoon Thought should be regarded as essential. Through this research, Daesoon Thought can be guided to take on this fundamental challenge in order to emerge as a future leader in this digital age and advent of digital humanities.

A study on the Prevention of industrial Disaster of the Coal Mining Industry through Safety Education (안전교육을 통한 석탄산업 재해 예방에 관한 연구)

  • Lee, Seung-Ho;Jung, Do-Young;Lee, Young-Mee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4489-4495
    • /
    • 2010
  • This study aims to examine the current situation of safety education of coal mining industry in Gangwon province, and suggest its problems and improvement directions. And the theoretical background was established through the literature, a survey study for general workers were conducted and its data were analyzed.