• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.025 seconds

A Hybrid K-anonymity Data Relocation Technique for Privacy Preserved Data Mining in Cloud Computing

  • S.Aldeen, Yousra Abdul Alsahib;Salleh, Mazleena
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.51-58
    • /
    • 2016
  • The unprecedented power of cloud computing (CC) that enables free sharing of confidential data records for further analysis and mining has prompted various security threats. Thus, supreme cyberspace security and mitigation against adversaries attack during data mining became inevitable. So, privacy preserving data mining is emerged as a precise and efficient solution, where various algorithms are developed to anonymize the data to be mined. Despite the wide use of generalized K-anonymizing approach its protection and truthfulness potency remains limited to tiny output space with unacceptable utility loss. By combining L-diversity and (${\alpha}$,k)-anonymity, we proposed a hybrid K-anonymity data relocation algorithm to surmount such limitation. The data relocation being a tradeoff between trustfulness and utility acted as a control input parameter. The performance of each K-anonymity's iteration is measured for data relocation. Data rows are changed into small groups of indistinguishable tuples to create anonymizations of finer granularity with assured privacy standard. Experimental results demonstrated considerable utility enhancement for relatively small number of group relocations.

Big Data Analysis of the Women Who Score Goal Sports Entertainment Program: Focusing on Text Mining and Semantic Network Analysis.

  • Hyun-Myung, Kim;Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.222-230
    • /
    • 2023
  • The purpose of this study is to provide basic data on sports entertainment programs by collecting data on unstructured data generated by Naver and Google for SBS entertainment program 'Women Who Score Goal', which began regular broadcast in June 2021, and analyzing public perceptions through data mining, semantic matrix, and CONCOR analysis. Data collection was conducted using Textom, and 27,911 cases of data accumulated for 16 months from June 16, 2021 to October 15, 2022. For the collected data, 80 key keywords related to 'Kick a Goal' were derived through simple frequency and TF-IDF analysis through data mining. Semantic network analysis was conducted to analyze the relationship between the top 80 keywords analyzed through this process. The centrality was derived through the UCINET 6.0 program using NetDraw of UCINET 6.0, understanding the characteristics of the network, and visualizing the connection relationship between keywords to express it clearly. CONCOR analysis was conducted to derive a cluster of words with similar characteristics based on the semantic network. As a result of the analysis, it was analyzed as a 'program' cluster related to the broadcast content of 'Kick a Goal' and a 'Soccer' cluster, a sports event of 'Kick a Goal'. In addition to the scenes about the game of the cast, it was analyzed as an 'Everyday Life' cluster about training and daily life, and a cluster about 'Broadcast Manipulation' that disappointed viewers with manipulation of the game content.

A review of big data analytics and healthcare (빅데이터 분석과 헬스케어에 대한 동향)

  • Moon, Seok-Jae;Lee, Namju
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.76-82
    • /
    • 2020
  • Big data analysis in healthcare research seems to be a necessary strategy for the convergence of sports science and technology in the era of the Fourth Industrial Revolution. The purpose of this study is to provide the basic review to secure the diversity of big data and healthcare convergence by discussing the concept, analysis method, and application examples of big data and by exploring the application. Text mining, data mining, opinion mining, process mining, cluster analysis, and social network analysis is currently used. Identifying high-risk factor for a certain condition, determining specific health determinants for diseases, monitoring bio signals, predicting diseases, providing training and treatments, and analyzing healthcare measurements would be possible via big data analysis. As a further work, the big data characteristics provide very appropriate basis to use promising software platforms for development of applications that can handle big data in healthcare and even more in sports science.

Towards a Deep Analysis of High School Students' Outcomes

  • Barila, Adina;Danubianu, Mirela;Paraschiv, Andrei Marcel
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.71-76
    • /
    • 2021
  • Education is one of the pillars of sustainable development. For this reason, the discovery of useful information in its process of adaptation to new challenges is treated with care. This paper aims to present the initiation of a process of exploring the data collected from the results obtained by Romanian students at the BBaccalaureate (the Romanian high school graduation) exam, through data mining methods, in order to try an in-depth analysis to find and remedy some of the causes that lead to unsatisfactory results. Specifically, a set of public data was collected from the website of the Ministry of Education, on which several classification methods were tested in order to find the most efficient modeling algorithm. It is the first time that this type of data is subjected to such interests.

A Study on the Technological Difficult Problems and Education Demand for Information Technology Sectors Women (여성정보인의 정보화에 대한 기술적 애로사항 및 IT 교육 요구 사항 조사 연구)

  • Cho, Young-Im;Jeong, Hyeong-Chul;Kim, Jee-Hyun
    • Journal of Engineering Education Research
    • /
    • v.12 no.3
    • /
    • pp.31-40
    • /
    • 2009
  • In this paper, we consider the characteristics of information technology sectors women. By surveying IT women worker, we attempted to define the attributes of them and examine the problems and what they are needed to IT education following the changes in the highly competitive information technology industry. Especially, we used data mining tools says association analysis to analyze for the Women Information Scientist Association of Korea(WINSA) provides IT worker women with education packages and what is the general culture course from the point of IT employment view. The data was analyzed by SAS enterprise tools.

A Study on the Perception of Artificial Intelligence Literacy and Artificial Intelligence Convergence Education Using Text Mining Analysis Techniques (텍스트 마이닝 분석기법을 활용한 인공지능 리터러시 및 인공지능 융합 교육에 관한 인식 연구)

  • Hyeok Yun;Jeongrang Kim
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.6
    • /
    • pp.553-566
    • /
    • 2022
  • This study collects social data and academic research data from portal sites and RISS, and analyzes TF-IDF, N-Gram, semantic network analysis, and CONCOR analysis to analyze the social awareness and current aspects of 'AI Literacy' and 'AI Convergence Education'. Through this, we tried to understand the social awareness aspect and the current situation, and to suggest implications and directions. In the social data, the collection of 'AI Convergence Education' was more than twice that of 'AI Literacy', indicating that awareness of 'AI Literacy' was relatively low. In 'AI Literacy', the keyword 'human' in social data showed no cluster to which it belonged, indicating a lack of philosophical interest in and awareness of humanities and AI. In addition, the keyword 'Ministry of Education' showed high frequency, importance, and centrality of connection only in the social data of 'AI convergence education', confirming that 'AI convergence education' is closely related to government policy.

An Analysis of Specialized Vocational High School's Educational outcome using Data Mining Technique (데이터 마이닝 기법을 이용한 특성화고등학교 교육성과 분석)

  • Kim, Jin;Yong, Hwan-Seung
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.21-33
    • /
    • 2014
  • This study reviewed the all specialized vocational high school across the nation, through the data per school in the Elementary, Middle & High Schools information disclosure system(2012), and carried out an analysis on the specialized vocational high school's educational outcomes in using the data mining technique. The educational outcomes of specialized vocational high schools were defined as the employment rate, the university entrance rate, the aware records in various vocational techniques contests. As the first research question, this study investigate whether there was any significant differences in educational outcomes depending on school's general characteristics. And as the second research question, this study explored the factors influencing on educational outcome.

  • PDF

Video Ranking Model: a Data-Mining Solution with the Understood User Engagement

  • Chen, Yongyu;Chen, Jianxin;Zhou, Liang;Yan, Ying;Huang, Ruochen;Zhang, Wei
    • Journal of Multimedia Information System
    • /
    • v.1 no.1
    • /
    • pp.67-75
    • /
    • 2014
  • Nowadays as video services grow rapidly, it is important for the service providers to provide customized services. Video ranking plays a key role for the service providers to attract the subscribers. In this paper we propose a weekly video ranking mechanism based on the quantified user engagement. The traditional QoE ranking mechanism is relatively subjective and usually is accomplished by grading, while QoS is relatively objective and is accomplished by analyzing the quality metrics. The goal of this paper is to establish a ranking mechanism which combines the both advantages of QoS and QoE according to the third-party data collection platform. We use data mining method to classify and analyze the collected data. In order to apply into the actual situation, we first group the videos and then use the regression tree and the decision tree (CART) to narrow down the number of them to a reasonable scale. After that we introduce the analytic hierarchy process (AHP) model and use Elo rating system to improve the fairness of our system. Questionnaire results verify that the proposed solution not only simplifies the computation but also increases the credibility of the system.

  • PDF

Analysis of 'Better Class' Characteristics and Patterns from College Lecture Evaluation by Longitudinal Big Data

  • Nam, Min-Woo;Cho, Eun-Soon
    • International Journal of Contents
    • /
    • v.15 no.3
    • /
    • pp.7-12
    • /
    • 2019
  • The purpose of this study was to analyze characteristics and patterns of 'better class' by using the longitudinal text mining big data analysis technique from subjective lecture evaluation comments. First, this study classified upper 30% classes to deduce certain characteristics and patterns from every five-year subjective text data for 10 years. A total of 47,177courses (100%) from spring semester 2005 to fall semester 2014 were analyzed from a university at a metropolitan city in the mid area of South Korea. This study extracted meaningful words such as good, course, professor, appreciation, lecture, interesting, useful, know, easy, improvement, progress, teaching material, passion, and concern from the order of frequency 2005-2009. The other set of words were class, appreciation, professor, good, course, interesting, understanding, useful, help, student, effort, thinking, not difficult, explanation, lecture, hard, pleasant, easy, study, examination, like, various, fun, and knowledge 2010-2014. This study suggests that the characteristics and patterns of 'better class' at college, should be analyzed according to different academic code such as liberal arts, fine arts, social science, engineering, math and science, and etc.

A study on 3-step complex data mining in society indicator survey (사회지표조사에서의 3단계 복합 데이터마이닝의 적용 방안)

  • Cho, Kwang-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.983-992
    • /
    • 2012
  • Social indicator survey can identify the state of society as a whole. When we create a policy, social indicator survey can reflect the public opinion of the region. Social indicator survey is an important measure of social change. Social indicator survey has been conducted in many municipalities (Seoul, Incheon, Busan, Ulsan, Gyeongsangnamdo, etc.). But, the result of social indicator survey analysis is mainly the basic statistical analysis. In this study, we propose a new data mining methodology for effective analysis. We propose a 3-step complex data mining in society indicator survey. 3-step complex data mining uses three data mining method (intervening association rule, clustering, decision tree).