• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.024 seconds

Empowering Agriculture: Exploring User Sentiments and Suggestions for Plantix, a Smart Farming Application

  • Mee Qi Siow;Mu Moung Cho Han;Yu Na Lee;Seon Yeong Yu;Mi Jin Noh;Yang Sok Kim
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.38-46
    • /
    • 2023
  • Farming activities are transforming from traditional skill-based agriculture into knowledge-based and technology-driven digital agriculture. The use of intelligent information and communication technology introduces the idea of smart farming that enables farmers to collect weather data, monitor crop growth remotely and detect crop diseases easily. The introduction of Plantix, a pest and disease management tool in the form of a mobile application has allowed farmers to identify pests and diseases of the crop using their mobile devices. Hence, this study collected the reviews of Plantix to explore the response of the users on the Google Play Store towards the application through Latent Dirichlet Allocation (LDA) topic modeling. Results indicate four latent topics in the reviews: two positive evaluations (compliments, appreciation) and two suggestions (plant options, recommendations). We found the users suggested the application to additional plant options and additional features that might help the farmers with their difficulties. In addition, the application is expected to benefit the farmer more by having an early alert of diseases to farmers and providing various substitutes and a list of components for the remedial measures.

Developing the high-risk drinking predictive model in Korea using the data mining technique (데이터마이닝 기법을 활용한 한국인의 고위험 음주 예측모형 개발 연구)

  • Park, Il-Su;Han, Jun-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1337-1348
    • /
    • 2017
  • In this paper, we develop the high-risk drinking predictive model in Korea using the cross-sectional data from Korea Community Health Survey (2014). We perform the logistic regression analysis, the decision tree analysis, and the neural network analysis using the data mining technique. The results of logistic regression analysis showed that men in their forties had a high risk and the risk of office workers and sales workers were high. Especially, current smokers had higher risk of high-risk drinking. Neural network analysis and logistic regression were the most significant in terms of AUROC (area under a receiver operation characteristic curve) among the three models. The high-risk drinking predictive model developed in this study and the selection method of the high-risk intensive drinking group can be the basis for providing more effective health care services such as hazardous drinking prevention education, and improvement of drinking program.

Motion Monitoring using Mask R-CNN for Articulation Disease Management (관절질환 관리를 위한 Mask R-CNN을 이용한 모션 모니터링)

  • Park, Sung-Soo;Baek, Ji-Won;Jo, Sun-Moon;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2019
  • In modern society, lifestyle and individuality are important, and personalized lifestyle and patterns are emerging. The number of people with articulation diseases is increasing due to wrong living habits. In addition, as the number of households increases, there is a case where emergency care is not received at the appropriate time. We need information that can be managed by ourselves through accurate analysis according to the individual's condition for health and disease management, and care appropriate to the emergency situation. It is effectively used for classification and prediction of data using CNN in deep learning. CNN differs in accuracy and processing time according to the data features. Therefore, it is necessary to improve processing speed and accuracy for real-time healthcare. In this paper, we propose motion monitoring using Mask R-CNN for articulation disease management. The proposed method uses Mask R-CNN which is superior in accuracy and processing time than CNN. After the user's motion is learned in the neural network, if the user's motion is different from the learned data, the control method can be fed back to the user, the emergency situation can be informed to the guardian, and appropriate methods can be taken according to the situation.

Text Mining-Based Emerging Trend Analysis for e-Learning Contents Targeting for CEO (텍스트마이닝을 통한 최고경영자 대상 이러닝 콘텐츠 트렌드 분석)

  • Kyung-Hoon Kim;Myungsin Chae;Byungtae Lee
    • Information Systems Review
    • /
    • v.19 no.2
    • /
    • pp.1-19
    • /
    • 2017
  • Original scripts of e-learning lectures for the CEOs of corporation S were analyzed using topic analysis, which is a text mining method. Twenty-two topics were extracted based on the keywords chosen from five-year records that ranged from 2011 to 2015. Research analysis was then conducted on various issues. Promising topics were selected through evaluation and element analysis of the members of each topic. In management and economics, members demonstrated high satisfaction and interest toward topics in marketing strategy, human resource management, and communication. Philosophy, history of war, and history demonstrated high interest and satisfaction in the field of humanities, whereas mind health showed high interest and satisfaction in the field of in lifestyle. Studies were also conducted to identify topics on the proportion of content, but these studies failed to increase member satisfaction. In the field of IT, educational content responds sensitively to change of the times, but it may not increase the interest and satisfaction of members. The present study found that content production for CEOs should draw out deep implications for value innovation through technology application instead of simply ending the technical aspect of information delivery. Previous studies classified contents superficially based on the name of content program when analyzing the status of content operation. However, text mining can derive deep content and subject classification based on the contents of unstructured data script. This approach can examine current shortages and necessary fields if the service contents of the themes are displayed by year. This study was based on data obtained from influential e-learning companies in Korea. Obtaining practical results was difficult because data were not acquired from portal sites or social networking service. The content of e-learning trends of CEOs were analyzed. Data analysis was also conducted on the intellectual interests of CEOs in each field.

Experimental and numerical simulating of the crack separation on the tensile strength of concrete

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Zhu, Zheming;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • Effects of crack separation, bridge area, on the tensile behaviour of concrete are studied experimentally and numerically through the Brazilian tensile test. The physical data obtained from the Brazilian tests are used to calibrate the two-dimensional particle flow code based on discrete element method (DEM). Then some specially designed Brazilian disc specimens containing two parallel cracks are used to perform the physical tests in the laboratory and numerically simulated to make the suitable numerical models to be tested. The experimental and numerical results of the Brazilian disc specimens are compared to conclude the validity and applicability of these models used in this research. Validation of the simulated models can be easily checked with the results of Brazilian tests performed on non-persistent cracked physical models. The Brazilian discs used in this work have a diameter of 54 mm and contain two parallel centred cracks ($90^{\circ}$ to the horizontal) loaded indirectly under the compressive line loading. The lengths of cracks are considered as; 10 mm, 20 mm, 30 mm and 40 mm, respectively. The visually observed failure process gained through numerical Brazilian tests are found to be very similar to those obtained through the experimental tests. The fracture patterns demonstrated by DEM simulations are mostly affected by the crack separation but the tensile strength of bridge area is related to the fracture pattern and failure mechanism of the testing samples. It has also been shown that when the crack lengths are less than 30 mm, the tensile cracks may initiate from the cracks tips and propagate parallel to loading direction till coalesce with the other cracks tips while when the cracks lengths are more than 30 mm, these tensile cracks may propagate through the intact concrete itself rather than that of the bridge area.

Topic Modeling on the Adolescent Problem Using Text Mining (텍스트 마이닝을 이용한 청소년 문제 토픽 모델링)

  • Cho, Ju-Yeon;Cho, Kyoung Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1589-1595
    • /
    • 2018
  • The purpose of this research is to search for and identify trends in adolescent problems on internet news sites. Among the domestic internet news sites, 8,110 articles on adolescent problems from 1993 to 2018 were analyzed for the top three top-ranked 'The Chosunilbo', 'The Dong-A Ilbo', and 'Korea Joongang Daily' news sites. As a result of this study, we have been able to understand the topic of adolescent problems in internet news sites for the last 26 years and find out that the trend of articles has been changed considering the environment, policies and culture related to adolescent problems. This study is meaningful to start from the method to examine the social trends of existing adolescent problems, to expand the scope of adolescent problems and counseling, to use quantitative analysis methods and to provide new information to consider diversity.

A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning (머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성)

  • Nam, Soo-Tai;Shin, Seong-Yoon;Jin, Chan-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.225-230
    • /
    • 2020
  • Machine learning is an algorithm which learns a computer based on the data so that the computer can identify the trend of the data and predict the output of new input data. Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning. Supervised learning is a way of learning a machine with given label of data. In other words, a method of inferring a function of the system through a pair of data and a label is used to predict a result using a function inferred about new input data. If the predicted value is continuous, regression analysis is used. If the predicted value is discrete, it is used as a classification. A result of analysis, no. 8 (5, 3.4, setosa), 27 (5, 3.4, setosa), 41 (5, 3.5, setosa), 44 (5, 3.5, setosa) and 40 (5.1, 3.4, setosa) in Table 3 were classified as the most similar Iris flower. Therefore, theoretical practical are suggested.

The Effect of Medical Service Design Thinking Teaching-learning on Empathic Problem Solving Ability: Convergence Analysis of Structured and Unstructured Data (의료서비스 디자인싱킹 교육의 공감적 문제해결능력 향상 효과: 정형 및 비정형 데이터 융복합 분석 중심으로)

  • Yoo, Jin-Yeong
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.311-321
    • /
    • 2020
  • The purpose of the study is to verify the effectiveness the Freshman Preliminary Health Administrators(FPHA)' Empathic Problem Solving Ability(EPSA) through the application of Medical Service Design Thinking(MSDT) conducted by undergraduate school of SNS hospital marketing education. The pre-post questionnaire survey was conducted on 39 students in the freshman year of the Department of Health Administration after applying MSDT for 15 weeks from September to December, 2019 at a college in Daegu. MSDT was positive influenced on the improvement of Empathic Imagine, Empathic interest, Empathic awakening of the FPHA' EPSA. In the analysis of key common words, the use of neutral and negative words was low, while the use of positive words was high. In order to systematically equip Empathic problem solving job competency in the age of artificial intelligence, it is meaningful to develop a program for the freshmen curriculum and to conduct a analysis of the structured and unstructured data to verify its effectiveness. Additional program development research is needed for the application of theoretical subjects.

A Study on Teachers’Recognition and Teaching methods in Housing of Home Economics Text Book of Middle School (중학교 가정 교과서의 주생활 단원에 대한 교사의 인식과 교육에 관한 연구)

  • 이은순;조재순
    • Journal of Korean Home Economics Education Association
    • /
    • v.5 no.1
    • /
    • pp.17-30
    • /
    • 1993
  • The purpose of this study is to investigate teachers’recognition and teaching methods in Housing of Home Economics Text Book of Middle School and to provide the basic data for the improvement of its curriculum. Home Economics teachers of the 433 schools responded in nationwide to the mailed questionaire. The selected data were manipulated by percent and verified in the way of t-test. The findings of this study are as follows: 1. Most Home Economics teachers have ever taken teacher training but there are few who have never taken any teacher training in Housing. And even those who have ever taken the training in Housing are not satisfied with the training curriculum contents. Therefore, the result of this study shows that Housing should be included in the teacher training curriculum contents, and that the teacher training curriculum contents, and that the teacher training curriculum contents should be helpful for the actual teaching and learning. 2. It is necessary to allot more houres for Housing, in that most teachers actually allot more time for Housing than presented in teachers’guide, and to develop more teaching aids for the effective instruction of Housing. In terms of the suitability of Housing to the students’learning development levels, the degree of suitability is in the order of the significance of housing, housing sanitation, the types of housing, the space for housing, the ground plan of housing, the arrangement of furniture. The contents about the interior decoration and gardening of the existing text book have turned out not to be appropriate.. In terms of the relation between the place of residence and the curriculum, Housing is suitable for the city, but not for the farming, mining, and sea village, Teachers suggest that the content of the curriculum about Housing should be varied according to the location of the school. 3. The number of the teaching aids for Housing is in the order of picture, charts and pamphlet but not sufficient.

  • PDF

A Study of Extraction of Variables Affecting the Adolescents' Computer Use Type with Decision Tree (의사결정트리 기반의 분석을 통한 청소년의 컴퓨터 사용 유형별 관련 변수 추출)

  • Lee, Hye-Joo;Jung, Eui-Hyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2012
  • This study investigated the extraction algorithm fitting for variables of adolescents' computer use type with the sample from KYPS data (3409 in the second grade of the junior high school; 1704 boys and 1705 girls). The results of the decision tree model revealed that : (1) Gender, computer use time, misdeed friends, parent supervision, other agreement of misdeed, parent study expectation, self-control, teacher attachment, and sibling relation were significant for entertainment type. (2) Gender, cyberclub, computer use time, self-belief, online misdeed were significant for relation type. (3) Study enthusiasm, personal study time, optimistic disposition, study and spare time, cyberclub, self-belief, and other people criticism were significant for information type. These results suggest that adolescents' diverse conditions should be considered for using computer more efficiently.

  • PDF