• Title/Summary/Keyword: Edison program

Search Result 37, Processing Time 0.032 seconds

EIDSON을 활용한 보의 선형 및 비선형 거동 해석

  • Sin, Dong-Gil;Son, In-Seo;Son, Dong-Min;Song, Yu-Jeong;Mun, Hak-Gyeong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.266-268
    • /
    • 2015
  • In this paper, we write about EDISON program. We study about where to use this program. We can use this program for FEA naturally. But we study that using this program in class. Many students can't understand many mechanics of materials' problem. They want to see image such as change of beam. It can help students to understand many problem. We can use ANSYS or Abaqus. But EDISON program is better for students because of it is freeware. In this paper, I write two problem. One is peak stress of basic beam, another is shearing stress flow of I-beam. On the basis of this, EDISON program will be widely used.

  • PDF

Utilizing EDISON_CFD for Airfoil selection of Human Powered Aircraft (인력비행기 Airfoil 선정을 위한 EDISON_CFD 활용)

  • Kim, Gyeong-Nam;Ryu, Gi-Myeong;Song, Yun-Jeong
    • Proceeding of EDISON Challenge
    • /
    • 2012.04a
    • /
    • pp.101-104
    • /
    • 2012
  • 본 논문에서는 충남대학교에서 설계하고 있는 인력비행기인 Volante의 주익 에어포일을 선정하기 위하여 교육 및 연구를 위한 CFD 해석 프로그램인 EDISON_CFD를 이용하여 후보군으로 있는 에어포일들의 경향성을 확인하고 성능이 좋은 에어포일을 선정하였다. 또한 CFD 프로그램으로 상용화된 Fluent와 비교하여 EDISON_CFD의 신뢰성을 확인하였다.

  • PDF

Pass obstacle walking robot using Jansen mechanism (경사/장애물/특수 표면을 이동할 수 있는 얀센 매커니즘 기반의 보행기구 설계)

  • Song, Chi kwang;Park, Jung bin;Choi, Hoon;Kim, Jong hyuk;An, Hyun kyum;Lee, Gun hee
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.477-480
    • /
    • 2016
  • Based on the Jansen mechanism theory, a walking robot is developed, which is able to overcome the given obstacles. Taking joint positions and leg directions as design parameters, the walking robot is analyzed. In order to analyze and optimize the leg motion, Edison program and Jansen mechanism optimization solver are used, respectively. It is found that Edison program is so effective to determine joint variables and position of leg direction. With the help of these programs, lots of trials or errors could be saved.

  • PDF

3-블레이드 회전익 항공기에서 기하학적 정밀 보의 공탄성 모델을 이용한 무베어링 로터의 자이로스코픽 세차 진동 제어

  • Im, Byeong-Uk;Kim, Yong-Se;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.270-281
    • /
    • 2017
  • In this paper, a vibratory disturbance to the rotor system generated by gyroscopic precession through helicopter rotor is examined. Also, active vibration reduction method is designed and simulated by designing feedback controller. For this purpose, structural analysis is carried out using EDISON's geometric exact beam program which can analyze the rotor with the cantilever condition. And the aeroelastic analysis is performed by coupling it with the simple aerodynamic model. In order to obtain the real-time structural response, the EDISON program analysis results were modeled by nonlinear equations and the Newton-Raphson method was used for the trim analysis.

  • PDF

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • Gang, Yu-Jin;Sim, Ji-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

Analysis of Stress Contour Plot of Implant Depending on Masticatory Force, Length, and Diameter (저작압, 직경, 길이 변화에 따른 임플란트 응력 분포 분석)

  • Nam, Young Jun;Yoon, Seung Hyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.240-245
    • /
    • 2016
  • In this paper, stress contour plots depending on length, load, and diameter of the implant are presented. Depending on the condition and amount of cortical bone, process of implanting can be difficult and stress becomes important. Therefore deciding the right length and diameter of implant is critical. When analyzing stress in the implant, Von-mises yield criterion is often used; however, due to hardship of acquiring the actual material property of surrounding bones, simplified model of a implant was adapted in finite element analysis program of EDISON. The result acquired from EDISON program was then compared with results of different research papers.

  • PDF

Jansen Mechanism을 기반으로 한 보행로봇의 최적화와 Line tracer

  • Do, Seung-Hun;Choe, Ju-Yeong;Kim, Min-Su;Park, Hyeon-Su;Kim, Dong-Hwi;Lee, Chun-Yeol
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.506-510
    • /
    • 2017
  • Based on the Jansen mechanism theory, a walking robot is developed, which is able to trace a line. In order to find the optimized legs, GL(Ground Length), GAC(Ground Angle Coefficient) and Grashof criteria are utilized in m.sketch program as well as EdisonDesign program. Many types of design are applied to sensors and controls, and the functionality is checked. Finally, a prototype line tracer robot is manufactured using aduino parts and smart boards. The prototype robot is test run to check the validity of the design, and modifications are applied to improve the performance according to each test result until the best design is achieved.

  • PDF

Analysis & Comparison of Stress Concentration Factors of 2D Plate with Single/Multiple Hole (2차원 평판 단일/다중 구멍에 대한 응력 집중 계수 해석 및 비교)

  • Lee, SangGu;Gong, DuHyun;Sim, JiSoo;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.209-216
    • /
    • 2016
  • Holes of rivets, bolts and nuts may cause stress concentration on the plates used in aircraft, ship and other structures. Excessive stress concentration may lead to severe breakage of the plates. Thus, accurate analysis of the stress concentration at the design stage will be important. In this paper, accuracy of EDISON program in stress concentration analysis was examined. By changing hole size on a narrow plate, the change of the stress concentration factor(K) was investigated. Additionally, the same experiment was conducted about series of holes on plate to investigate the interaction between adjacent holes. Then, these numerical results were compared with the analytic prediction. EDISON program showed very high accuracy about stress concentration, since the numerical results was correlated well with the analytic prediction.

  • PDF

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • Park, Cheol-U;Ju, Hyeon-Sik
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

복합재료 적층판의 유한요소법 기반 역학적 거동 해석

  • Im, Yeong-Nam;Cheon, Jae-Hui;Lee, Ho-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.285-291
    • /
    • 2015
  • In this paper, a composite material analysis program based on the finite element method(FEM) is used. The purpose of this study was to verify whether the composite material analysis program which developed as part of a project of development of softwares and educational contents for structural vibration and composite material analysis that can calculate how similar the macroscopic mechanical behavior of the composite materials actually. Because composite materials are generally anisotropic, analysis of composite laminate is used for the constitutive equations of orthotropic material. For convenience, the unit is ommited in all calculations. To verify the accuracy of the finite element method based program, the deflection and stress distribution of the simply supported composite material laminated plate subjected to a uniform load distribution is compared with exact solution. Size and properties of the composite material laminate used for analysis are fixed variables, and by changing the number of elements and the total thickness of the laminate is compared with the exact solution to the resulting value, respectively.

  • PDF