• Title/Summary/Keyword: Edging angle

Search Result 5, Processing Time 0.016 seconds

Effects of Counter-rotation Position on Knee/Hip Angulation, Center of Mass Inclination, and Edging Angle in Simulated Alpine Skiing

  • Yoon, Sukhoon;Kim, Jin-Hae;Park, Jae-Hyeon;Ryu, Jiseon;Park, Sang-Kyoon;Kim, Joo-Nyeon
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.91-97
    • /
    • 2017
  • Objective: To investigate rotation movement of segment for performing each position and its effect on knee/hip angulation, COM inclination, and edging angle changes. Method: Twelve Alpine skiers (age: $25.8{\pm}4.8years$, height: $173.8{\pm}5.9cm$, weight: $71.4{\pm}7.4kg$, length of career: $9.9{\pm}4.6years$) participated in this study. Each skier was asked to perform counter-rotation, neutral, and rotation positions. Results: Shank and thigh were less rotated in the counter-rotation position than in other positions, whereas the trunk and pelvis were more counter-rotated (p<.05). Hip angulation, COM inclination, and edging angle were significantly greater in the counter-rotation position than in other positions (p<.05). Conclusion: Our finding proved that the counter-rotation position increases hip angulation, COM inclination, and edging angle. Consequently, we suggest that skiers should perform counter-rotation of the trunk and pelvis relative to the ski direction in the vertical axis for the counter-rotation position. Further analysis will continue to investigate the effects of the counter-rotation position in real ski slope with kinetic analysis.

Comparison of Three-dimensional Kinematic Changes of the Lower Extremity between the Two Different Braking Distances of Snowplow in Alpine Skiing

  • Kim, Joo-Nyeon;Kim, Jin-Hae;Ryu, Jiseon;Yoon, Sukhoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.361-367
    • /
    • 2016
  • Objective: The aim of this study was to compare three-dimensional kinematic changes of the lower extremity between the two different braking distances during snowplow in alpine skiing. Method: Six alpine ski instructors (age: $25.3{\pm}1.5yr$, height: $169.3{\pm}2.9cm$, weight: $66.2{\pm}5.9kg$, career: $4.2{\pm}2.9yr$) participated in this study. Each skier was asked to perform snowplow on the two different braking distances (2 and 4 m). Results: Snowplow and edging angles (p = .006 and p = .005), ankle adduction and inversion (p = .033 and p = .002), knee extension (p = .003), and hip abduction and internal rotation (p = .043 and p = .006) were significantly greater in the 2 m than in the 4 m braking distance. Conclusion: Based on our results, we suggest that skiers should make greater snowplow and edging angles on the shorter braking distance. In this situation, ankle joint adduction/inversion angle and hip joint internal-rotation make greater snowplow angle, and hip joint abduction make greater edging angle. In addition, greater knee joint extension angle may lead to more posteriorly positioned center of mass.

Kinematic Comparative Analysis of Short Turns between Skilled and Unskilled Alpine Skiers

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.219-226
    • /
    • 2019
  • Objective: The purpose of this study is to provide a better understanding of short turn mechanism by describing short turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (ski-hip angle, ski-shoulder twist angle, pole checking angle, the center of gravity (CG) displacement, trunk forward lean angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for short turns. Results: There was no difference in a ski-hip twist angle. The ski-shoulder twist angle was large at the up-start point while a pole-checking angle was high at the down-end point in skilled skiers. Concerning the horizontal displacement of CG, skilled skiers were positioned on the right side at the upstart point. No significant difference was observed in the trunk forward lean angle. Conclusion: According to the ski-shoulder twist angle and CG horizontal displacement results, the upper body should be kept leant toward the pole. In addition, big turns should be made via edging and angulation. During pole checking, the hand holding the pole should be thrown and released toward a vector direction of the forearm.

The Differences in the Ski Carving Turn Motion According to Level of Exper tise (스키 카빙턴 동작 시 기술 수준에 따른 동작의 차이 연구)

  • Eun, Seon-Deok;Hyun, Moo-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.319-325
    • /
    • 2010
  • The purpose of this research was to investigate the differences in the ski carving turn motion according to level of expertise. The posture and movement of 6 skiers nearby the fall-line was evaluated with a biomechanical approach focusing the rotational mechanics. The slope was at an angle of $9^{\circ}$ and the following variables were measured and calculated: tangential velocity, change of COM height after passing fall-line, width between feet, angle between upper body and thigh, trunk angle, average radius of curvature and average centripetal force. The expert skiers minimized their center of mass height movement and maintained the width of between their feet after the passing the fall-line in comparison with the beginners and intermediate skiers. The experts restrained themselves from pushing their upper body downward after the turn to maximize the centripetal force. The experts in comparison with the beginners and intermediate skiers during the turn didn't have to reduce their radius of curvature to maintain a high centripetal force. It was concluded, that the most important factor affecting the centripetal force, was for the beginners and intermediate skiers, to minimize their movement while using the appropriate amount of edging.

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.1
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.