• Title/Summary/Keyword: Edge-Enhancement

Search Result 329, Processing Time 0.021 seconds

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Reduction of Edge Artifact in Adaptive Template Filtering (적응 템플릿 필터링에서의 Edge artifact 제거)

  • Ahn, C.B.;Song, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2921-2923
    • /
    • 2000
  • Adaptive template filtering has been proposed recently for an enhancement of signal-to-noise ratio. In some magnetic resonance images whose gray levels have relatively small dynamic ranges, e.g., T1 imaging, however, artificial stair-like artifact is observed in edge regions. This is partially due to edge enhancement effect in such voxels that contain multiple compounds at the boundaries of tissues. The gray levels of these voxels tend to change those of near voxels that contain single compound by the adaptive filtering, which exaggerate edge discontinuities. In this paper, we propose a technique to eliminate such artifact by identifying those voxels and assigning a larger template for them. Filtered images with the proposed technique show substantial visual enhancement at the edges without degradation of peak signal-to-noise ratio compared to the original adaptive template filtering for both magnetic resonance images and phantom images

  • PDF

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.

Welding Bead Segmentation Algorithm Using Edge Enhancement and Active Contour (에지 향상과 활성 윤곽선을 이용한 용접 비드 영역화 알고리즘)

  • Mlyahilu, John N.;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.209-215
    • /
    • 2020
  • In this paper, we propose an algorithm for segmenting weld bead images using edge enhancement and active contours. In the proposed method, high-frequency filtering and contrast improvement are performed for edge enhancement, and then, by applying the active contour method, only the weld bead region can be obtained. The proposed algorithm detects an edge through high-frequency filtering and reinforces the detected edge by using contrast enhancement. After the edge information is improved in this way, the weld bead area can be extracted by applying the active contour method. The proposed algorithm shows better performance than the existing methods for segmenting the weld bead in the image. For the objective reliability of the proposed algorithm, it was compared with the existing high pass filtering methods, and it was confirmed that the welding bead segmentation of the proposed method is excellent. The proposed method can be usefully used in evaluating the quality of the weld bead through an additional procedure for the segmented weld bead.

A Study on the Image Enhancement of Port Films using Edge-Adaptive Kalmsn filter (경계-적응 칼만필터를 이용한 Port Films의 영상개선에 관한 연구)

  • 박순옥
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.427-432
    • /
    • 1996
  • The primary purpose of port filming is to verify the treatment volume under treatment. Although the image quality with the megavoltage x-ray beam is poorer than with the diagnostic or the simulator film. This paper proposes an edge-adaptive Kalman filter for the image enhancement of port films. Suggested filtering procedure preserves edge information and eliminates edge noise and inside and outside treatment area preserving treatment boundary.

  • PDF

Observer Preferable Sharpness Enhancement Considering Distributions of Edge Characteristics (경계선 특성을 고려한 관측자 선호 선예도 개선 방법)

  • 홍상기;정재영;김대희;조맹섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.275-278
    • /
    • 2002
  • Sharpness enhancement, which strengthen the edge(high frequency) of image, is widely studied for image processing research area. In this paper, psychophysical experiment is conducted by the 20 observers with simple linear unsharp masking for sharpness enhancement. The experimental results extracted using z-score analysis and linear regression suggests observer preferable sharpness enhancement method for digital television.

  • PDF

A New Image Enhancement Algorithm Based on Bidirectional Diffusion

  • Wang, Zhonghua;Huang, Xiaoming;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.49-60
    • /
    • 2020
  • To solve the edge ringing or block effect caused by the partial differential diffusion in image enhancement domain, a new image enhancement algorithm based on bidirectional diffusion, which smooths the flat region or isolated noise region and sharpens the edge region in different types of defect images on aviation composites, is presented. Taking the image pixel's neighborhood intensity and spatial characteristics as the attribute descriptor, the presented bidirectional diffusion model adaptively chooses different diffusion criteria in different defect image regions, which are elaborated are as follows. The forward diffusion is adopted to denoise along the pixel's gradient direction and edge direction in the pixel's smoothing area while the backward diffusion is used to sharpen along the pixel's gradient direction and the forward diffusion is used to smooth along the pixel's edge direction in the pixel's edge region. The comparison experiments were implemented in the delamination, inclusion, channel, shrinkage, blowhole and crack defect images, and the comparison results indicate that our algorithm not only preserves the image feature better but also improves the image contrast more obviously.

Histogram Equalization Algorithm for Suppressing Over-Enhancement and Enhancing Edges (과대 대조 강조 방지 및 엣지 강화를 동시에 수행하는 히스토그램 평활화 알고리듬)

  • Mun, Junwon;Kim, Jaeseok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.9
    • /
    • pp.983-991
    • /
    • 2019
  • Histogram equalization method is a popular contrast enhancement technique. However, there are some drawbacks, namely, over-enhancement, under-enhancement, structure information loss, and noise amplification. In this paper, we propose an edge-enhancing histogram equalization algorithm while suppressing over-enhancement simultaneously. Firstly, over-enhancement is suppressed by clipping a transfer function, then, edge enhancement is achieved by using guided image filter. Experiments are carried out to evaluate the performance of the various HE algorithms. As a result, both qualitative and quantitative assessment showed that the proposed algorithm successfully suppressed over-enhancement while enhancing edges.

Region Based Contrast-to-Noise Ratio Enhancement for Medical Images (의학 영상에서의 영역 기반 해상도대잡음비 향상)

  • 송영철;최두현
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.118-126
    • /
    • 2004
  • The modified Wiener filtering method is proposed for effective noise suppression in edge region of images corrupted by additive white gaussian noise. Although the pixels classified as a edge region in the conventional Wiener filter have lots of noise components, the conventional Wiener filter cannot remove noise effectively due to the preserving of edges. To reduce noise well in edge region, we modify filter coefficients of the conventional Wiener filter. The modified filter coefficients increase in noise suppression effect in edge region, while they preserve edges for strong edge region. From simulation (256${\times}$256 size, 256 graylevel images) filtered images by the proposed method show much improved subjective image quality with higher peak signal-to-noise ratio compared to those by the conventional Wiener filtering.

Adaptive Error Diffusion for Text Enhancement (문자 영역을 강조하기 위한 적응적 오차 확산법)

  • Kwon Jae-Hyun;Son Chang-Hwan;Park Tae-Yong;Cho Yang-Ho;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.1 s.307
    • /
    • pp.9-16
    • /
    • 2006
  • This Paper proposes an adaptive error diffusioThis paper proposes an adaptive error diffusion algorithm for text enhancement followed by an efficient text segmentation that uses the maximum gradient difference (MGD). The gradients are calculated along with scan lines, and the MGD values are filled within a local window to merge the potential text segments. Isolated segments are then eliminated in the non-text region filtering process. After the left segmentation, a conventional error diffusion method is applied to the background, while the edge enhancement error diffusion is used for the text. Since it is inevitable that visually objectionable artifacts are generated when using two different halftoning algorithms, the gradual dilation is proposed to minimize the boundary artifacts in the segmented text blocks before halftoning. Sharpening based on the gradually dilated text region (GDTR) prevents the printing of successive dots around the text region boundaries. The error diffusion algorithm with edge enhancement is extended to halftone color images to sharpen the tort regions. The proposed adaptive error diffusion algorithm involves color halftoning that controls the amount of edge enhancement using a general error filter. The multiplicative edge enhancement parameters are selected based on the amount of edge sharpening and color difference. Plus, the additional error factor is introduced to reduce the dot elimination artifact generated by the edge enhancement error diffusion. By using the proposed algorithm, the text of a scanned image is sharper than that with a conventional error diffusion without changing background.