• Title/Summary/Keyword: Edge improvement

Search Result 475, Processing Time 0.03 seconds

A Character Analysis of the Woodland Edge in point of Landscape Ecology (수림가장자리의 경관생태적 특성분석)

  • Cho, Hyun-Ju;Ra, Jung-Hwa
    • Current Research on Agriculture and Life Sciences
    • /
    • v.25
    • /
    • pp.13-18
    • /
    • 2007
  • The aim of this research is to set improvement guidance a character analysis of woodland edge to cope with the ecological dysfunction of woodland which was caused by massive development project and thoughtless development in country areas. The summary of research result are as follows. 1) From the result of landscape ecology characteristic analysis of woodland in all seven research sites, to begin with, in proportion of appearance by vegetation layer and condition of composition, site 5 showed to be most satisfactory. 2) A width of woodland edge was revealed 7.5m as a minimum, 17.0m as a maximum, and 11.4m as a average and minimum edge was set as 10m according to integrated analysis on each example place. 3) As a result of flexibility analysis, site 1, 2 and 5 was shown high value 3, and it is thought that curve rather than linearity should be maintained in order to increase the ecological function. Also, a phenomenon of straight was prominent, and as a woodland edge, green network and buffering system showed to be somewhat unsatisfactory. 4) Based on the result of character analysis of landscape ecology, main guidelines for improvement of woodland edge were categorized into five in parallel structure and three in vertical structure respectively. The guidelines for improvement of woodland edge suggested by the research has a deep meaning in that it is used as a basic material to induce for controling more systematically or landscape-friendly the defamed forest problems caused by road construction, various development projects, and enlargement of agricultural lands.

  • PDF

Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms (임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가)

  • Minha Lee;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.

Transient Improvement Algorithm in Digital Images

  • Kwon, Ji-Yong;Chang, Joon-Young;Lee, Min-Seok;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.74-76
    • /
    • 2010
  • Digital images or videos are used in modern digital devices. The resolution of HDTV in digital broadcasting system is higher than that of previous analog systems. Also, mobile phone with 3G can provide images as well as video streaming services in realtime. In these circumstances, the visual quality of images has become an important factor. We can make image clear by transient improvement process that reduces transient in edges. In this paper, we present an transient improvement algorithm. The proposed algorithm improves edges by making smooth edge to steep edge. Before performing transient improvement algorithm, edge detection algorithm should be operated. Laplacian operator is used in edge detection, and the absolute value of it is used to calculate gain value. Then, local maximum and minimum values are computed to discriminate current pixel value to raise up or pull down. Compensating value that gain value multiplies with the difference between maximum (or minimum) value and current pixel value adds (or subtracts) to current pixel value. That is, improved signal is generated by making the narrow transient of edge. The advantage of proposed algorithm is that it doesn't produce shooting problem like overshoot or undershoot.

  • PDF

Computational Flow Analysis on the Flow Field Improvement of an Indoor RAC by LES (LES에 의한 RAC 실내기의 유동장 개선에 관한 전산유동해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2012
  • The computational flow analysis using LES technique was introduced to investigate the flow field improvement of an indoor RAC chassis consisting of a rear-guider, a stabilizer and a cross-flow fan. This unsteady three-dimensional numerical analysis was carried out by the commercial SC/Tetra software. The edge blocks were adopted in this study as a tool for the flow field improvement of an indoor RAC. In view of the results so far achieved, the edge blocks cause the center of an eccentric vortex to be stable along all length of a cross-flow fan, and then, the static pressure and the velocity vector show a stable distributions. In consequence, because the edge blocks eliminate a reverse flow near the edges, an exhausting flow becomes to be stable and uniform.

A method for ultrasound image edge enhancement by using Probabilistic edge map (초음파 진단영상 대조도 개선을 위한 확률 경계 맵을 이용한 연구)

  • Choi, Woo-hyuk;Park, Won-hwan;Park, Sungyun
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Ultrasonic imaging is the most widely modality among modern imaging device for medical diagnosis. Nevertheless, medical ultrasound images suffer from speckle noise and low contrast. In this paper, we propose probabilistic edge map for ultrasound image edge enhancement using automatic alien algorithm. The proposed method used applied speckle reduced ultrasound imaging for edge improvement using sequentially acquired ultrasound imaging. To evaluate the performance of method, the similarity between the reference and edge enhanced image was measured by quantity analysis. The experimental results show that the proposed method considerably improves the image quality with region edge enhancement.

Performance Improvement of Cylindrical Turbine Guide Bearings with Pad Leading-Edge Tapers for Vertical Hydro-Power Application: Effects of Taper Angle and Length (패드 선단 테이퍼를 갖는 수력 수직 원통형 터빈 가이드 베어링의 성능향상 - 테이퍼 각도와 길이의 영향)

  • Lee, An Sung;Jang, Sun-Yong;Park, Soo Man
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Cylindrical turbine guide bearings (TGBs) with simple plain pads have conventionally been used in vertical hydro-power turbine-generator applications in order to provide turbine runner shafts with smooth rotation guides and supports. To overcome low-load/low-eccentricity performance drawbacks, such as very low film stiffness and lack of design credibility in the stiffness values themselves, of conventional cylindrical TGBs, the introduction of a rotational-directional leading-edge taper to each partitioned pad, simply pad leading-edge taper, has been found to be very effective in enhancing their design-application availability and usefulness. In this study, we investigate the effects of taper angle and length for given taper heights in detail in order to systematically establish the effectiveness of design on the performance improvement of vertical hydro-power application cylindrical TGBs with pad leading-edge tapers. The analysis results with $4-Pad{\times}1-Row$ cylindrical TGBs show that the lubrication performance of the cylindrical TGBs is optimized with an approximate taper angle ratio of 0.8 and taper length ratio of 0.9. We conclude that the introduction of pad leading-edge tapers along with the optimization of taper designs can be very effective in improving the overall operation reliability of cylindrical TGBs and the rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems as well, to which the TGBs are applied.

Simple Fuzzy Rule Based Edge Detection

  • Verma, O.P.;Jain, Veni;Gumber, Rajni
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.575-591
    • /
    • 2013
  • Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.

Effect of the Blade Leading Edge on the Performance of a Centrifugal Compressor

  • Chu, Leizhe;Du, Jianyi;Zhao, Xiaolu;Xu, Jianzhong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.168-172
    • /
    • 2008
  • Three different geometry shapes of the blade leading edge in a centrifugal compressor were investigated in this paper. Numerical simulation was done to analyze the effect of the leading edge shape on the performance of the centrifugal compressor. The result shows that compared to the blunt leading edge, the circular leading edge will raise the chocking mass flow. The pressure ratio and efficiency will increase obviously. Using elliptical leading edge will get a further improvement on the performance than circular leading edge. The analysis of the flow field shows that the leading edge often causes flow separation near the inlet; using circular leading edge and elliptical leading edge will reduce the separation. What's more, using circular and elliptical leading edge will also reduce the wake loss near the outlet of the impeller. In a centrifugal compressor, using circular or elliptical leading edge on the splitter will improve the pressure loading distribution of main blade near the position of the splitter leading, which will increase the pressure ratio.

  • PDF

A study on the speckle noise removal and edge detection using gradient and symmetry (기울기와 유사성을 이용한 스페클 잡음 제거 및 경계선 검출에 관한 연구)

  • 홍승범;백종환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.138-147
    • /
    • 1997
  • The ultrasonic images are corrupted by the granular pattern noise - a speckle noise. The speckle exist in the type of coherent imaging systems, and the speckle is the signal independent and multiplicative noise. In this paepr, we derive two filters using the gradient and symmetry. One is a noise suppression filter which removes noise while preserves the edges. It is named the ASRF-GS (Adaptive Speckle Removal Filer - Gradient and Symmetry). And the other is a edge detection filter which obtains the thin edge map, called the EDUGS(Edge Detection Using Gradient and Symmetry). The performance of the proposed noise suppression filter is evaluated by the IMPV(SNR improvement) and the Speckle Index(SI), and the perforamnce of the edge detection is evaluated by the edge detection error rate. According to the evaluated method, The SI reduced about 0.035, The IMPV improved about 1.265(dB), and the edge detection error rate is about 17.5%.

  • PDF

FLAP DEELECTION OPTIMZATION FOR TRANSONIC CRUISE PERFORMANCE IMPROVEMENT OF SUPERSONIC TRANSPORT WING

  • Kim Hyoung-Jin;Obayashi Shigeru;Nakahashi Kazuhiro
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.32-38
    • /
    • 2000
  • Wing flap deflection angles of a supersonic transport are optimized to improve transonic cruise performance. For this end, a numerical optimization method is adopted using a three-dimensional unstructured Euler code and a discrete adjoint code. Deflection angles of ten flaps; five for leading edge and five fur railing edge, are employed as design variables. The elliptic equation method is adopted for the interior grid modification during the design process. Interior grid sensitivities are neglected for efficiency. Also tested is the validity of the approximate gradient evaluation method for the present design problem and found that it is applicable for loading edge flap design in cases of no shock waves on the wing surface. The BFGS method is used to minimize the drag with constraints on the lift and upper surface Mach numbers. Two design examples are conducted; one is leading edge flap design, and the other is simultaneous design of leading edge and trailing edge flaps. The latter gave a smaller drag than the former by about two counts.

  • PDF