• Title/Summary/Keyword: Edge detect

Search Result 462, Processing Time 0.027 seconds

Robust Vision Based Algorithm for Accident Detection of Crossroad (교차로 사고감지를 위한 강건한 비젼기반 알고리즘)

  • Jeong, Sung-Hwan;Lee, Joon-Whoan
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.117-130
    • /
    • 2011
  • The purpose of this study is to produce a better way to detect crossroad accidents, which involves an efficient method to produce background images in consideration of object movement and preserve/demonstrate the candidate accident region. One of the prior studies proposed an employment of traffic signal interval within crossroad to detect accidents on crossroad, but it may cause a failure to detect unwanted accidents if any object is covered on an accident site. This study adopted inverse perspective mapping to control the scale of object, and proposed different ways such as producing robust background images enough to resist surrounding noise, generating candidate accident regions through information on object movement, and by using edge information to preserve and delete the candidate accident region. In order to measure the performance of proposed algorithm, a variety of traffic images were saved and used for experiment (e.g. recorded images on rush hours via DVR installed on crossroad, different accident images recorded in day and night rainy days, and recorded images including surrounding noise of lighting and shades). As a result, it was found that there were all 20 experiment cases of accident detected and actual effective rate of accident detection amounted to 76.9% on average. In addition, the image processing rate ranged from 10~14 frame/sec depending on the area of detection region. Thus, it is concluded that there will be no problem in real-time image processing.

A Study on Maximizing the Matching Ratio of Scintillation Pixels and Photosensors of PET Detector using a Small Number of Photosensors (적은 수의 광센서를 사용한 PET 검출기의 섬광 픽셀과 광센서 매칭 비율의 최대화 연구)

  • Lee, Seung-Jae;Baek, Cheol-Ha
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.749-754
    • /
    • 2021
  • In order to maximize the matching ratio between the scintillation pixel and the photosensor of the PET detector using a small number of photosensor, various arrays of scintillation pixels and four photosensors were used. The array of scintillation pixels consisted of six cases from 6 × 6 to 11 × 11. The distance between the photosensors was applied equally to all scintillation pixels, and the arrangement was expanded by reducing the size of scintillation pixel. DETECT2000 capable of light simulation was used to acquire flood images of the designed PET detectors. At the center of each scintillation pixel array, light generated through the interaction between extinction radiation and scintillation pixels was generated, and the light was detected through for four photosensors, and then a flood image was reconstructed. Through the reconstructed flood image, we found the largest arrangement in which all the scintillation pixels can be distinguished. As a result, it was possible to distinguish all the scintillation pixels in the flood image of 8 × 8 scintillation pixel array, and from the 9 × 9 scintillation pixel flood image, the two edge scintillation pixels overlapped and appeared in the image. At this time, the matching ratio between the scintillation pixel and the photosensor was 16:1. When a PET system is constructed using this detector, the number of photosensors used is reduced and the cost of the oveall system is expected to be reduced through the simplification of the signal processing circuit.

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

A Study on Real-time Tracking Method of Horizontal Face Position for Optimal 3D T-DMB Content Service (지상파 DMB 단말에서의 3D 컨텐츠 최적 서비스를 위한 경계 정보 기반 실시간 얼굴 수평 위치 추적 방법에 관한 연구)

  • Kang, Seong-Goo;Lee, Sang-Seop;Yi, June-Ho;Kim, Jung-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.88-95
    • /
    • 2011
  • An embedded mobile device mostly has lower computation power than a general purpose computer because of its relatively lower system specifications. Consequently, conventional face tracking and face detection methods, requiring complex algorithms for higher recognition rates, are unsuitable in a mobile environment aiming for real time detection. On the other hand, by applying a real-time tracking and detecting algorithm, we would be able to provide a two-way interactive multimedia service between an user and a mobile device thus providing a far better quality of service in comparison to a one-way service. Therefore it is necessary to develop a real-time face and eye tracking technique optimized to a mobile environment. For this reason, in this paper, we proposes a method of tracking horizontal face position of a user on a T-DMB device for enhancing the quality of 3D DMB content. The proposed method uses the orientation of edges to estimate the left and right boundary of the face, and by the color edge information, the horizontal position and size of face is determined finally to decide the horizontal face. The sobel gradient vector is projected vertically and candidates of face boundaries are selected, and we proposed a smoothing method and a peak-detection method for the precise decision. Because general face detection algorithms use multi-scale feature vectors, the detection time is too long on a mobile environment. However the proposed algorithm which uses the single-scale detection method can detect the face more faster than conventional face detection methods.

Assessment of the FC-DenseNet for Crop Cultivation Area Extraction by Using RapidEye Satellite Imagery (RapidEye 위성영상을 이용한 작물재배지역 추정을 위한 FC-DenseNet의 활용성 평가)

  • Seong, Seon-kyeong;Na, Sang-il;Choi, Jae-wan
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.823-833
    • /
    • 2020
  • In order to stably produce crops, there is an increasing demand for effective crop monitoring techniques in domestic agricultural areas. In this manuscript, a cultivation area extraction method by using deep learning model is developed, and then, applied to satellite imagery. Training dataset for crop cultivation areas were generated using RapidEye satellite images that include blue, green, red, red-edge, and NIR bands useful for vegetation and environmental analysis, and using this, we tried to estimate the crop cultivation area of onion and garlic by deep learning model. In order to training the model, atmospheric-corrected RapidEye satellite images were used, and then, a deep learning model using FC-DenseNet, which is one of the representative deep learning models for semantic segmentation, was created. The final crop cultivation area was determined as object-based data through combination with cadastral maps. As a result of the experiment, it was confirmed that the FC-DenseNet model learned using atmospheric-corrected training data can effectively detect crop cultivation areas.

Facial Contour Extraction in Moving Pictures by using DCM mask and Initial Curve Interpolation of Snakes (DCM 마스크와 스네이크의 초기곡선 보간에 의한 동영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.58-66
    • /
    • 2006
  • In this paper, we apply DCM(Dilation of Color and Motion information) mask and Active Contour Models(Snakes) to extract facial outline in moving pictures with complex background. First, we propose DCM mask which is made by applying morphology dilation and AND operation to combine facial color and motion information, and use this mask to detect facial region without complex background and to remove noise in image energy. Also, initial curves are automatically set according to rotational degree estimated with geometric ratio of facial elements to overcome the demerit of Active Contour Models which is sensitive to initial curves. And edge intensity and brightness are both used as image energy of snakes to extract contour at parts with weak edges. For experiments, we acquired total 480 frames with various head-poses of sixteen persons with both eyes shown by taking pictures in inner space and also by capturing broadcasting images. As a result, it showed that more elaborate facial contour is extracted at average processing time of 0.28 seconds when using interpolated initial curves according to facial rotation degree and using combined image energy of edge intensity and brightness.

Object Detection Algorithm Using Edge Information on the Sea Environment (해양 환경에서 에지 정보를 이용한 물표 추출 알고리즘)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.69-76
    • /
    • 2011
  • According to the related reports, about 60 percents of ship collisions have resulted from operating mistake caused by human factor. Specially, the report said that negligence of observation caused 66.8 percents of the accidents due to a human factor. Hence automatic detection and tracking of an object from an IR images are crucial for safety navigation because it can relieve officer's burden and remedies imperfections of human visual system. In this paper, we present a method to detect an object such as ship, rock and buoy from a sea IR image. Most edge directions of the sea image are horizontal and most vertical edges come out from the object areas. The presented method uses them as a characteristic for the object detection. Vertical edges are extracted from the input image and isolated edges are eliminated. Then morphological closing operation is performed on the vertical edges. This caused vertical edges that actually compose an object be connected and become an object candidate region. Next, reference object regions are extracted using horizontal edges, which appear on the boundaries between surface of the sea and the objects. Finally, object regions are acquired by sequentially integrating reference region and object candidate regions.

Adult Image Classification using Adaptive Skin Detection and Edge Information (적응적 피부색 검출과 에지 정보를 이용한 유해 영상분류방법)

  • Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a novel method of adult image classification by combining skin color regions and edges in an input image. The proposed method consists of four steps. In the first step, initial skin color regions are detected by logical AND operation of all skin color regions detected by the existing methods of skin color detection. In the second step, a skin color probability map is created by modeling the distribution of skin color in the initial regions. Then, a binary image is generated by using threshold value from the skin color probability map. In the third step, after using the binary image and edge information, we detect final skin color regions using a region growing method. In the final step, adult image classification is performed by support vector machine(SVM). To this end, a feature vector is extracted by combining the final skin color regions and neighboring edges of them. As experimental results, the proposed method improves performance of the adult image classification by 9.6%, compared to the existing method.

Distortion of Resistivity Data Due to the 3D Geometry of Embankment Dams (저수지 3차원 구조에 의한 전기비저항 탐사자료의 왜곡)

  • Cho, In-Ky;Kang, Hyung-Jae;Kim, Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.291-298
    • /
    • 2006
  • Resistivity method is a practical and effective geophysical technique to detect leakage zones in embankment dams. Generally, resistivity survey conducted along the crest assumes that the embankment dam has a 2D structure. However, the 3D topography of embankments distorts significantly resistivity data measured on anywhere of the dam. In this study, we analyse the influence from 3D effects created by specific dam geometry through the 3D finite element modeling technique. We compared 3D effects when resistivity surveys are carried out on the upstream slope, left edge of the crest, center of the crest, right edge of the crest and downstream slope. We ensure that 3D effect is greatly different according to the location of the survey line and data obtained on the downstream slope are most greatly influenced by 3D dam geometry. Also, resistivity data are more influenced by the electrical resistivity of materials constituting reservoir than 3D effects due to specific dam geometry. Furthermore, using resistivity data synthesized with 3D modeling program for an embankment dam model with leakage zone, we analyse the possibility of leakages detection from 2D resistivity surveys performed along the embankment dam.