• Title/Summary/Keyword: Edge and boundary effects

Search Result 101, Processing Time 0.028 seconds

Effects of the Thickness of Bond Coating on the Thermal Stress of TBC (접착층의 두께가 용사 열차폐 코팅의 열응력에 미치는 영향)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.228-231
    • /
    • 2000
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

A Study on the Effects of the Thickness of Top Coat on the Thermal Stresses of a Sprayed Thermal Barrier Coating (용사 열차폐 코팅층의 두께가 열응력에 미치는 영향)

  • 김형남;양승한
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.223-225
    • /
    • 2004
  • Based on the principle of complementary energy an analytical method is developed for determining thermal stress distribution in an thermal barrier coating. This method gives the stress distributions which satisfy the stress-free boundary conditions at the edge. Numerical examples are given in order to verify the method and to investigate the thickness effects of the ZrO$_2$-8wt%Y$_2$O$_3$ top coat on the integrity of thermal barrier coating consisted of IN738LC substrate and MCrAlY bond coat.

  • PDF

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.306-309
    • /
    • 1999
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the claded beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical result shows that shear stress and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even though the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam become smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Thermal Stresses near the Edge of Laminated Beam (다층보 자유단 부위의 열응력)

  • Kim Hyung-Nam;Kim Young-Ho
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2005
  • An analytical method for determining the thermal stress distributions in a 3-layered beam is developed, which is focused on the end effects. This method gives the stress distributions which satisfy the stress-free boundary condition at the end completely. For verification of the method, a numerical example which was introduced by other researchers is treated. The stress distributions agree with the results of other researchers. The results show that the show and peeling stresses at the interfaces are significant near the edge and become negligible in the interior region.

Pyroelectric and pyromagnetic effects on behavior of magneto-electro-elastic plate

  • Kondaiah, P.;Shankar, K.;Ganesan, N.
    • Coupled systems mechanics
    • /
    • v.2 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Under thermal environment, Magneto-Electro-Elastic (MEE) material exhibits pyroelectric and pyromagnetic effects which can be used for enhancing the performance of MEE sensors. Recently studies have been published on material constants such as pyroelectric constant and pyromagnetic constant for magneto-electro-thermo-elastic smart composite. Hence, the main aim of this paper is to study the pyroelectric and pyromagnetic effects on behavior of MEE plate under different boundary conditions subjected to uniform temperature. A numerical study is carried out using eight noded brick finite element under uniform temperature rise of 100 K. The study focused on the pyroelectric and pyromagnetic effects on system parameters like displacements, thermal stresses, electric potential, magnetic potential, electric displacements and magnetic flux densities. It is found that, there is a significant increase in electric potential due to the pyroelectric and pyromagnetic effects. These effects are visible on electric and magnetic potentials when CFFC and FCFC boundary conditions are applied. Additionally, the pyroelectric and pyromagnetic effects at free edge is dominant (nearly thrice the value in CFFC in comparison with FCFC) than at middle of the plate. This study is a significant contribution to sensor applications.

Frequency Effects of Upstream Wake and Blade Interaction on the Unsteady Boundary Layer Flow

  • Kang, Dong-Jin;Bae, Sang-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1303-1313
    • /
    • 2002
  • Effects of the reduced frequency of upstream wake on downstream unsteady boundary layer flow were simulated by using a Wavier-Stokes code. The Wavier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds number turbulence model to close the momentum equations. The geometry used in this paper is the MIT flapping foil experimental set-up and the reduced frequency of the upstream wake is varied in the range of 0.91 to 10.86 to study its effect on the unsteady boundary layer flow. Numerical solutions show that they can be divided into two categories. One is so called the low frequency solution, and behaves quite similar to a Stokes layer. Its characteristics is found to be quite similar to those due to either a temporal or spatial wave. The low frequency solutions are observed clearly when the reduced frequency is smaller than 3.26. The other one is the high frequency solution. It is observed for the reduced frequency larger than 7.24. It shows a sudden shift of the phase angle of the unsteady velocity around the edge of the boundary layer. The shift of phase angle is about 180 degree, and leads to separation of the boundary layer flow from corresponding outer flow. The high frequency solution shows the characteristics of a temporal wave whose wave length is half of the upstream frequency. This characteristics of the high frequency solution is found to be caused by the strong interaction between unsteady vortices. This strong interaction also leads to destroy of the upstream wake strips inside the viscous sublayer as well as the buffer layer.

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

Vibration Characteristics of Ring-Stiffened Composite Cylindrical Shells with Various Edge Boundary Conditions (다양한 경계조건을 갖는 링보강 복합재료 원통셸의 진동특성)

  • 김영완;이영신
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.485-492
    • /
    • 1999
  • The effects of boundary conditions on vibration characteristics for the ring stiffered composite cylindrical shells are investigated by theoretical and experimental method. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect are adopted to derive the frequency equation. In experiment, the impact exciting method is used to obtain the vibraton results. Five different boundary conditions: clamped-clamped, simply supported-simply supported, free-free, clamped-free, clamped-simply supported are considered in this study.

  • PDF

An Optimality Theoretic Analysis of Tonal Realization in Korean

  • Oh, Mi-Ra
    • Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.89-101
    • /
    • 2003
  • This paper investigates edge effects on the relationship between the underlying tonal sequence and its surface realization in the IP-final Accentual Phrase within the Optimality Theoretic framework. I will examine the way in which AP tones are aligned with their associated syllables in IP-final position. In Korean. Jun's (1996) 'see-saw effect' does not allow any two identical tones if they are marking a boundary of a prosodic group. A phonetic experiment conducted in this paper suggests that the 'see-saw effect' only apply to H boundary tones. Furthermore, it will be shown that the timing of tonal peaks is determined through the ranking of a set of violable constraints. The AP tonal realization is achieved through the access to the global intonation in a complicated way. In the course of discussion, pitch patterns in IP-medial Accentual Phrase will also be discussed.

  • PDF

Aero-acoustic Performance Pprediction Method and Parametric Studies of Axial Flow Fan (축류 홴의 공력-음향학적 성능 예측방법 및 매개변수 연구)

  • Lee, Chan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.661-669
    • /
    • 1996
  • Proposed is an aero-acoustic performance prediction method of axial fan. The fan aerodynamic performance is predicted by combining pitch-averaged quasi 3-D flow analysis with pressure loss models for blade boundary layer and wake, secondary flow, endwall boundary layer and tip leakage flows. Fan noise is assumed to be radiated as dipole distribution type, and its generation is assumed to be mainly due to the vortex street shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex stree shed from blade trailing edge. The fluctuating pressure and lift on the blade surface are analyzed by incorporating the wake vortex street model with thin airfoil theory. The aero-acoustic performance prediction results by the present method are in good agreement with the measured results of several axial fans. With the present prediction method, parametric studies are carried out to investigate the effects of blade chord length and spacing on the efficiency and the noise level of fan. In the case of lightly loaded fan, both efficiency improvement and noise reduction can be achieved by decreasing chord length or by increasing blade specing. However, when fan is designed at highly loaded condition, the noise reduction by increasing blade spacing penalizes the attaninable efficiency of fan.

  • PDF