• 제목/요약/키워드: Edge Model

검색결과 1,622건 처리시간 0.027초

Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석 (Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction)

  • 강호근;김은라
    • 한국해양공학회지
    • /
    • 제18권5호
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향 (The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials)

  • 김주현
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구 (A Performance Comparison of Parallel Programming Models on Edge Devices)

  • 남덕윤
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

다중회귀분석법을 이용한 진공유리패널 모서리 접합부와 공정변수간의 수학적 모델 개발 (Mathematical Model of the Edge Sealing Parameters for Vacuum Glazing Panel Using Multiple Regression Method)

  • 김영신;전의식
    • 한국산학기술학회논문지
    • /
    • 제13권3호
    • /
    • pp.961-966
    • /
    • 2012
  • 고유가 시대를 맞아 에너지 절약이 사회적으로 이슈화됨에 따라 진공유리에 대한 관심이 높아지고 있다. 진공유리 개발을 위한 핵심 공정 중 유리모서리 접합공정은 두 장의 유리 사이를 진공으로 유지하기 위해 높은 신뢰도를 요한다. 본 논문에서는 유리 모서리 접합 시 기존 프릿을 이용하여 접합하는 방법과 달리 고밀도열원인 수소혼합가스를 이용하여 모서리를 접합하는 공정을 제시하였다. 또한 유리의 파손 및 변형방지를 위해 전기로내의 분위기 온도를 설정하고 균일도를 측정하였다. 기초시험을 통해 모서리접합 공정변수를 설정하고 공정변수에 따른 유리 모서리 접합부 면적과의 수학적관계식을 다중회귀분석으로 도출하였다.

비용 최소화 방법을 이용한 모서리 감지 (Edge Detection using Cost Minimization Method)

  • 이동우;이성훈
    • 사물인터넷융복합논문지
    • /
    • 제8권1호
    • /
    • pp.59-64
    • /
    • 2022
  • 기존의 모서리 감지 기법들은 모서리에 대한 정확한 정의를 바탕으로 하여 정의된 형태의 모서리만을 발견하기 때문에 현실 세계에 존재하는 복잡하고 다양한 형태의 이미지에 대한 모서리를 발견하는데 많은 제약이 따른다. 이러한 문제점을 해결하여 다양한 형태의 모서리를 발견하기 위한 방법이 비용최소화 방법이다. 이 방법에서는 비용함수 및 비용요소를 정의하여 사용하며, 이 비용함수는 후보 모서리 생성 전략에 따라 생성되는 후보 모서리 모형에 대한 비용을 계산하여 만족할 만한 결과가 나타나게 되면 해당 후보 모서리 모형이 해당 이미지에 대한 모서리가 된다. 본 연구에서는 비용최소화 방법의 문제점인 정의된 형태의 모서리만을 발견한다는 단점을 개선하기 위해 좀 더 다양한 형태의 이미지에 대한 모서리를 발견하기 위한 후보 모서리 생성 전략을 제안하였다. 또한 이러한 점을 반영한 간단한 모의실험을 통해 개선 내용을 확인하였다.

Characteristics of Southern Ocean Sea Ice Distribution Modeled Using Cavitating Fluid Rheology and Climatological Atmospheric Data

  • Yih, Hyung-Moh;Mechoso, Carlos R.
    • Journal of the korean society of oceanography
    • /
    • 제34권2호
    • /
    • pp.59-72
    • /
    • 1999
  • Cavitating fluid sea ice model of Plato and Hibler (1992) is applied to the Southern Ocean with an idealized, circular Antarctica. Using climatological atmospheric forcing fields averaged in the zonal direction, we show that oceanic heat flux and ice velocity have major effects on the seasonal change of ice edge, as other studies showed. In our model results, there appears a zone of free drift that contains a polynya zone. Thermodynamic forcing functions make dominant contributions to daily increments of ice thickness and compactness, except the zones of ice edge and polynya. The dominant contributions are also shown in distributions of the temperature on ice surface and several to terms in surface heat balance equation, and are also confirmed by those obtained from the thermodynamic-only model with the different locations of ice edge.

  • PDF

후판 압연의 온라인 온도예측 모델 개발 (Development of On-line Temperature Prediction Model for Plate Rolling)

  • 서인식;이창선;조세돈;주웅용
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.283-292
    • /
    • 1999
  • Temperature prediction model was developed for on-line application to plate rolling mills of POSCO. The adequate boundary conditions of heat transfer coefficients were obtained by comparing the predicted temperature with the measured temperatures taken by measuring system in plate rolling mill of POSCO. In obtaining the boundary condition which minimize the mean and standard deviation of the difference between prediction and measurement, orthogonal array for experimental design was used to reduce the calculation time of large data set. To predict the temperature drop at four edge of plate in one dimensional model, the energy change by heat transfer though directions perpendicular to thickness direction was treated like that by deformation. And the heat transfer through four edge directions was inferred from that through thickness direction with two coefficients of depth and severity of temperature drop at the edge. The boundary condition for the depth and severity of temperature drop were also determined using the measured temperature.

  • PDF

차종 식별 - 간격 크기에 따른 (Car Identification - Interval Size)

  • 김도관;신성윤;이현창;이양원;박기홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.107-108
    • /
    • 2016
  • 특징점들 사이의 간격과 크기의 비례식으로 자동차의 차종을 식별하는 방법을 제시한다. 자동차 영상은 기본 RGB모델에서 Gray색상 모델로 변환시켜 사용한다. Canny Edge Direction을 통하여 자동차의 배경 제거를 수행한다. 윤곽선 검출을 통하여 원하는 특징 점을 얻는다.

  • PDF

An Improved Level Set Method to Image Segmentation Based on Saliency

  • Wang, Yan;Xu, Xianfa
    • Journal of Information Processing Systems
    • /
    • 제15권1호
    • /
    • pp.7-21
    • /
    • 2019
  • In order to improve the edge segmentation effect of the level set image segmentation and avoid the influence of the initial contour on the level set method, a saliency level set image segmentation model based on local Renyi entropy is proposed. Firstly, the saliency map of the original image is extracted by using saliency detection algorithm. And the outline of the saliency map can be used to initialize the level set. Secondly, the local energy and edge energy of the image are obtained by using local Renyi entropy and Canny operator respectively. At the same time, new adaptive weight coefficient and boundary indication function are constructed. Finally, the local binary fitting energy model (LBF) as an external energy term is introduced. In this paper, the contrast experiments are implemented in different image database. The robustness of the proposed model for segmentation of images with intensity inhomogeneity and complicated edges is verified.

A Scene-Specific Object Detection System Utilizing the Advantages of Fixed-Location Cameras

  • Jin Ho Lee;In Su Kim;Hector Acosta;Hyeong Bok Kim;Seung Won Lee;Soon Ki Jung
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.329-336
    • /
    • 2023
  • This paper introduces an edge AI-based scene-specific object detection system for long-term traffic management, focusing on analyzing congestion and movement via cameras. It aims to balance fast processing and accuracy in traffic flow data analysis using edge computing. We adapt the YOLOv5 model, with four heads, to a scene-specific model that utilizes the fixed camera's scene-specific properties. This model selectively detects objects based on scale by blocking nodes, ensuring only objects of certain sizes are identified. A decision module then selects the most suitable object detector for each scene, enhancing inference speed without significant accuracy loss, as demonstrated in our experiments.