• Title/Summary/Keyword: Edge Machining

Search Result 206, Processing Time 0.02 seconds

Linear Fresnel Lens Optimization for Middle Concentrated Photovoltaic (중집광형 태양광 집광장치 용 선형 프레넬 렌즈의 최적화설계연구)

  • Song, Je Heon;Yu, Jin Hee;Lee, Jun Ho;Jang, Won Keun;Lee, Dong Gil
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.213-216
    • /
    • 2013
  • This paper presents a combination of linear Fresnel lenses optimized for ${\times}25$ solar concentration. The combined lens consists of $5{\times}5$ linear Fresnel lenses. Each Fresnel lens is of $10{\times}10$ mm and optimized to tilt the incoming light onto a solar cell of the same size. All of the optimized Fresnel segments have the same pattern height of 35 ${\mu}m$, draft angle of $4^{\circ}$, and edge groove round of 1 ${\mu}m$ but with different facet angles varying from $14.1^{\circ}$ to $31.2^{\circ}$. The solar concentrating efficiency of the combination is shown to be over 80% and more robust than a conventional single ${\times}25$ circular Fresnel lens in terms of pointing misalignment and manufacturing errors. A sensitivity analysis finds that the edge groove round should be kept as small as machining allows since the concentrating efficiency drops ~5% per 1 ${\mu}m$ increase of the edge groove.

Development of the Vision System to Inspect the Inside of the Brake Calipers (브레이크 캘리퍼 내부 검사를 위한 비전시스템 개발)

  • Kwon, Gyoung Hoon;Chu, Hyung Gon;Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • Development of vision system as a nondestructive evaluation system can be very useful in screening the defective mechanical parts before they are assembled into the final product. Since the tens of thousands of the mechanical parts are used in an automobile carefully inspecting the quality of the mechanical parts is very important to maximize the performance of the automobile. To sort out the defective mechanical parts before they are assembled, auto parts fabrication companies employ various inspection systems. Nondestructive evaluation systems are getting rapidly popular among various inspection systems. In this study, we have developed a vision system to inspect the inside of the brake caliper, a part that is used to compose a brake which is the most important to the safety of the drivers and the passengers. In a brake caliper, a piston is pushed against the brake disk by oil pressure, causing a friction to damp the rotation of the wheel. Inside the caliper, a groove is positioned to adopt an oil seal to prevent the oil leaks. Inspecting the groove with our vision system, we could examine the existence of the contaminants which are normally the residual tiny pieces from the machining process. We used a high resolution GigE camera, 360 degree lens to look in the inside view of the caliper at once, and a special illumination system in this vision system. We used the edge detection technique to successfully detect the contaminants which were in the form of small metal chips. Labview graphical program was used to process the digital data from the camera and to display the vision and the statistics of the contaminants. We were very successful in detecting the contaminants from the various size calipers. We think we are ready to employ this vision system to the caliper production factories.

A Study on Polishing of Grooved Surface by the Second-Generation Magnetic Abrasive Polishing (2 세대 자기연마를 이용한 미세 그루브형상 표면가공에 관한 연구)

  • Kim, Sang-Oh;Lee, Sung-Ho;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1641-1646
    • /
    • 2011
  • The second-generation magnetic abrasive polishing is one of the nontraditional machining technologies newly developed. Because of the flexibility effect in magnetic abrasive polishing, the precise and mirror like surface can be obtained during this process. In this study, magnetic abrasive polishing process was applied in small grooved surface. As a result, it was seen that the flexible magnetic abrasive tool was effective to remove burrs on the edge of the groove. However, the efficiency of magnetic abrasive polishing at the slot was very low according to increasing depth and width of slot. So, correlation between geometric parameters, such as the depth and width, and surface roughness was evaluated and the minimum width for suitable polishing was found by experimental results.

A Study on Performance Improvement of Whirling Machines (Whirling machine의 성능 개선을 위한 연구)

  • Lee Jung-Ki;Yang Woo-suk;Son Jea-seok;Han Hui-duck;Kim Han-soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1416-1429
    • /
    • 2005
  • In order to meet the increasing competitive pressures coupled with higher demands for component quality, whirling machines have been at the cutting edge of the automobile industry for more than 25 years. The hard whirling process can save on machining time and operation elimination. Hard whirling is done dry, without coolant. The chips carry away nearly all of the heat during cutting, leaving the workpiece cool and minimizing any thermal geometry variations. The surface finish and profile accuracy are close to grinding quality. Whirling machines usually consist of four major parts; 1) loading system that requires the necessary axial speeds, 2) head stock that needs high precision clamping and positioning system at the chuck and tailstock, 3) whirling unit that demands the high cutting speeds and cutting power fer cutting deep thread profiles and 4) unloading system that requires an easy workpiece unloading. Also, capabilities of the whirling machine can be improved by attaching a vision system to the machine. Most of whirling machines in Korean automobile industry are imported from the Leistritz company, Germany and the Hasegawa company, Japan. Tn this paper, a basic research will be performed to improve and enhance the existing whirling machines. Finally, a new Korean whirling machine will be proposed and developed.

Dependence of the Diamond Coating Adhesion on the Microstructure of WC-Co Substrates (WC-Co계 미세조직에 따른 CVD 다이아몬드 코팅막의 접착력 변화)

  • Lee, Dong-Beum;Chae, Ki-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.728-734
    • /
    • 2004
  • The effect of microstructure of WC-Co substrates which have different WC grain sizes from submicron to 5 $\mu$m on the diamond-substrate adhesion strength was investigated. The substrates were pre-treated by two methods : chemical etching with Murakami's solution and subsequently with $H_2SO_4$, and thermal heat-treatment. The adhesion strength was estimated by degree of peeling after Rockwell indentation. Diamond films of 20 $\mu$m thickness deposited on the heat-treated substrates showed an excellent adhesion strength at the load of 100 kg, which ascribed to the large and elongated WC grains. However, the cutting edge of insert was deformed after heat treatment and the surface morphology of heat treated substrate strongly affected on the surface roughness of the deposited diamond films. On the contrary, the diamond film of 10 $\mu$m in thickness on the chemically etched substrates of average WC grain size over 2 $\mu$m showed good adhesion strength enough not to peel-off under a load of 60 kg. Especially, the substrate of average WC grain size over 5 $\mu$m exhibited much improved reliability of adhesion comparing with the substrate of average grain size under 2 $\mu$m. No substrate deformation was observed in this case after the chemical etching, which is more advantageous and more practical in terms of precious machining than the heat treatment case.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.