• Title/Summary/Keyword: Edge Image

Search Result 2,460, Processing Time 0.025 seconds

Experimental and numerical FEM of woven GFRP composites during drilling

  • Abd-Elwahed, Mohamed S.;Khashaba, Usama A.;Ahmed, Khaled I.;Eltaher, Mohamed A.;Najjar, Ismael;Melaibari, Ammar;Abdraboh, Azza M.
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.503-522
    • /
    • 2021
  • This paper investigates experimentally and numerically the influence of drilling process on the mechanical and thermomechanical behaviors of woven glass fiber reinforced polymer (GFRP) composite plate. Through the experimental analysis, a CNC machine with cemented carbide drill (point angles 𝜙=118° and 6 mm diameter) was used to drill a woven GFRP laminated squared plate with a length of 36.6 mm and different thicknesses. A produced temperature during drilling "heat affected zone (HAZ)" was measured by two different procedures using thermal IR camera and thermocouples. A thrust force and cutting torque were measured by a Kistler 9272 dynamometer. The delamination factors were evaluated by the image processing technique. Finite element model (FEM) has been developed by using LS-Dyna to simulate the drilling processing and validate the thrust force and torque with those obtained by experimental technique. It is found that, the present finite element model has the capability to predict the force and torque efficiently at various drilling conditions. Numerical parametric analysis is presented to illustrate the influences of the speeding up, coefficient of friction, element type, and mass scaling effects on the calculated thrust force, torque and calculation's cost. It is found that, the cutting time can be adjusted by drilling parameters (feed, speed, and specimen thickness) to control the induced temperature and thus, the force, torque and delamination factor in drilling GFRP composites. The delamination of woven GFRP is accompanied with edge chipping, spalling, and uncut fibers.

A Worker-Driven Approach for Opening Detection by Integrating Computer Vision and Built-in Inertia Sensors on Embedded Devices

  • Anjum, Sharjeel;Sibtain, Muhammad;Khalid, Rabia;Khan, Muhammad;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.353-360
    • /
    • 2022
  • Due to the dense and complicated working environment, the construction industry is susceptible to many accidents. Worker's fall is a severe problem at the construction site, including falling into holes or openings because of the inadequate coverings as per the safety rules. During the construction or demolition of a building, openings and holes are formed in the floors and roofs. Many workers neglect to cover openings for ease of work while being aware of the risks of holes, openings, and gaps at heights. However, there are safety rules for worker safety; the holes and openings must be covered to prevent falls. The safety inspector typically examines it by visiting the construction site, which is time-consuming and requires safety manager efforts. Therefore, this study presented a worker-driven approach (the worker is involved in the reporting process) to facilitate safety managers by developing integrated computer vision and inertia sensors-based mobile applications to identify openings. The TensorFlow framework is used to design Convolutional Neural Network (CNN); the designed CNN is trained on a custom dataset for binary class openings and covered and deployed on an android smartphone. When an application captures an image, the device also extracts the accelerometer values to determine the inclination in parallel with the classification task of the device to predict the final output as floor (openings/ covered), wall (openings/covered), and roof (openings / covered). The proposed worker-driven approach will be extended with other case scenarios at the construction site.

  • PDF

Development of Crosswalk Situation Recognition Device (횡단보도 상황 인식 디바이스 개발)

  • Yun, Tae-Jin;No, Mu-Ho;Yeo, Jeong-Hun;Kim, Jae-Yun;Lee, Yeong-Hoon;Hwang, Seung-Hyeok;Kim, Hyeon-Su;Kim, Hyeong-Jun;Park, Seung-Ryeol;Bae, Chang-Hui
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.143-144
    • /
    • 2020
  • 4차 산업 시대가 도래하여 빅데이터와 딥러닝 기술은 다양한 분야에서 아주 중요한 기술로 자리 잡고 있으며, 현재 세계 여러 분야에서 이 기술들을 이용하여 일상, 산업 분야에 적용을 시키고자 한다. 국내에서는 스마트 팩토리, 스마트 시티와 같은 분야에 적용하고 있다. 본 논문에서는 스마트 시티에 적용할 수 있는 횡단보도 상황을 인지하여 교통제어에 활용할 수 있는 빅데이터를 생산하거나 효율적인 교통제어에 활용할 수 있도록 Nvidia Jetson TX2와 실시간 객체 감지 기술인 YOLO v3를 이용하여 횡단보도용 상황 인식을 위한 영상인식 장치를 개발하였다. 제안하는 기술들을 이용하여 스마트시티 구축에 활용할 수 있고, 실시간으로 추가적으로 필요한 객체를 감지하여 확장이 용이한 장점이 있다. 또한 구현에서 효율성을 높이기 위하여 에지 컴퓨팅, 스페이스 디텍션과 같은 기술들을 활용하였다.

  • PDF

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

Analyzing the Effects of Consumer Value Perception, Environmental Motives, and Perceived Barriers on the Purchase Intention of Vegan Cosmetics (비건 화장품의 구매의도에 영향을 미치는 소비자 가치 인식, 환경적 동기 및 지각된 장벽의 영향 분석)

  • Eun-Hee Lee;Seunghee Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1043-1054
    • /
    • 2023
  • Amidst the rapid growth of the vegan cosmetics market, consumer orientation towards environmental and ethical values has been intensifying. However, research on this subject remains limited. This study delves into the relationship between consumer value perception, environmental motivations, and perceived barriers influencing the purchase intentions of vegan cosmetics. Conducting a PLS-SEM analysis on a sample of 300 women with experience using vegan cosmetics, it was discerned that monetary value, social value, brand value, emotional value, quality value, and environmental knowledge play significant roles in influencing purchase intentions. The moderating effect analysis highlighted image barriers and value barriers as crucial factors. Through Importance-Performance Map Analysis, emotional value emerged as a pivotal element in strategizing to strengthen the purchasing intentions for vegan cosmetics. This research contributes both theoretically and practically to enhancing the competitive edge of the vegan cosmetics market and promoting sustainable consumption behavior.

Examples of AI Technology Applications in the Field of Cultural Heritage Record Management -Focusing on "Finding Cultural Heritage - ZOOM"- (문화유산 기록관리 분야 AI기술 적용 사례 -'문화유산 찾아-ZOOM'을 중심으로-)

  • Ju hyun Baek
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.24 no.3
    • /
    • pp.145-156
    • /
    • 2024
  • This study explores the integration of cutting-edge technology with records management, aiming to create new value not only in work processes but also in record information services. The research focuses on the case of constructing an "AI-based cultural heritage research record learning data and search system," carried out by the National Research Institute of Cultural Heritage (NRICH) Archives, and analyzes user satisfaction results. "Discovering Cultural Heritage with ZOOM" is a system designed to proactively predict research data demand by constructing big data (learning data) from images (675,338 items) contained in 1,421 volumes of publications in the cultural heritage field, spanning from 1973 to the present, and simultaneously presenting 50 similar images. This initiative aims to foster change and development in the field of records management and cultural heritage in response to the Fourth Industrial Revolution's advanced technologies. It is expected to provide valuable information to researchers, practitioners, and the general public alike.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

Postprocessing of Inter-Frame Coded Images Based on Convex Projection and Regularization (POCS와 정규화를 기반으로한 프레임간 압출 영사의 후처리)

  • Kim, Seong-Jin;Jeong, Si-Chang;Hwang, In-Gyeong;Baek, Jun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.58-65
    • /
    • 2002
  • In order to reduce blocking artifacts in inter-frame coded images, we propose a new image restoration algorithm, which directly processes differential images before reconstruction. We note that blocking artifact in inter-frame coded images is caused by both 8$\times$8 DCT and 16$\times$16 macroblock based motion compensation, while that of intra-coded images is caused by 8$\times$8 DCT only. According to the observation, we Propose a new degradation model for differential images and the corresponding restoration algorithm that utilizes additional constraints and convex sets for discontinuity inside blocks. The proposed restoration algorithm is a modified version of standard regularization that incorporate!; spatially adaptive lowpass filtering with consideration of edge directions by utilizing a part of DCT coefficients. Most of video coding standard adopt a hybrid structure of block-based motion compensation and block discrete cosine transform (BDCT). By this reason, blocking artifacts are occurred on both block boundary and block interior For more complete removal of both kinds of blocking artifacts, the restored differential image must satisfy two constraints, such as, directional discontinuities on block boundary and block interior Those constraints have been used for defining convex sets for restoring differential images.

Film Line Scratch Detection using a Neural Network based Texture Classifier (신경망 기반의 텍스처 분류기를 이용한 스크래치 검출)

  • Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.26-33
    • /
    • 2006
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.

Development of a PTV Algorithm for Measuring Sediment-Laden Flows (유사 흐름 측정을 위한 입자추적유속계 알고리듬의 개발)

  • Yu, Kwon-Kyu;Muste, Marian;Ettema, Robert;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.841-849
    • /
    • 2005
  • Two-phase flows, e.g. sediment-laden flow and bubbly flow, have two different flow profiles; flow velocity and sediment velocity. To measure velocity distributions of two-phase flows, it is necessary to use sophisticated instruments which can separate velocity profiles of two-phases. For bubbly flows, PIV (Particle Image Velocimetry) or PTV (Particle Tracking Velocimetry) has given fairly good velocity profiles of two-phases. However, for sediment-laden flows, the applications of PIV or PTV has not been so successful, because the sediment particles introduced to the flow kept the images from being analyzed. A new algorithm, which consists of several image analysis methods, is proposed to analyze sediment-laden flows. For detection algorithm, threshold method, edge detection method, and thinning method are adapted, and for finding matching pair PIV and PTV routines are combined. The proposed method can (1) detect sediment particles with irregular boundaries, (2) remove reflected images and scattered images, and (3) discriminate tracer particles from reflected images of sediment particles.