• Title/Summary/Keyword: Edge Flame Oscillation

Search Result 20, Processing Time 0.028 seconds

Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Jeong-Soo;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

Edge Flame Instability of CH4-Air Diffusion Flame Diluted with CO2 (이산화탄소로 희석된 메탄-공기 확산화염의 에지화염 불안정성)

  • Hwang, Dong-Jin;Kim, Jeong-Soo;Keel, Sang-In;Kim, Tae-Kwon;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.9 s.252
    • /
    • pp.905-912
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss in addition to radiative loss could be remarkable at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this sheets flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations are categorized into three: a growing-, a harmonic- and a decaying-oscillation mode. Onset conditions of the edge flame oscillation and the relevant modes are examined with global strain rate and $CO_2$ mole fraction in fuel stream. A flame stability map based on the flame oscillation modes is also provided at low strain rate flames.

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames (저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과)

  • Park June-Sung;Hwang Dong-Jin;Kim Jeong-Soo;Keel Sang-In;Kim Tae-Kwon;Park Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.996-1002
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified

Acceleration in Diffusive-thermal Instability by Heat Losses (열손실에 의한 확산-열 불안정성의 가속화)

  • Park, June-Sung;Park, Jeong;Lee, Kee-Man;Kim, Jeong-Soo;Kim, Sung-Cho
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.145-152
    • /
    • 2007
  • The dynamic behaviors of counterflow non-premixed flame have been investigated experimentally to study effects of heat losses on edge flame oscillation, which result from the advancing and retreating edge flame motion of outer flame edge at low strain rate flame. For low strain rate flame, lateral conduction heat loss in addition to radiation heat loss could be more remarkable than the others. Oscillatory instabilities appear at fuel Lewis number greater than unity. But excessive lateral conduction heat loss causes edge flame instability even at fuel Lewis number less than unity. The dramatic change of burner diameters in which flame length is an indicator of lateral conduction heat loss was applied to examine the onset condition of edge flame oscillation and flame oscillation modes. Especially, extinction behaviors quite different from the previous study were observed.

  • PDF

A Study on Effects of Flame Curvature in Oscillatory Laminar Lifted-flames (진동하는 층류부상화염에서 화염곡률 효과에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Experiment is conducted to grasp effects of flame curvature on flame behavior in laminar lifted-jet flames. Nozzle diameters of 0.1 and 1.0mm are used to vary flame curvature of edge flame. There exist three types of edge flame oscillation. These edge flame oscillations may be caused by radial heat loss at all flame conditions, by fuel Lewis numbers near or larger than unity with the help of appreciable radial conduction heat loss, and by buoyancy effects. These are confirmed by the analysis of oscillation frequencies. It is however seen that the change of lift-off height through edge-flame oscillation is mainly due to radial heat loss irrespective of Lewis number and buoyancy.

  • PDF

Experimental Study on Edge Flame Instabilities in Solid Rocket Combustion (고체로켓연소에서 에지화염 불안정성에 대한 실험적 연구)

  • Hwang Dong-Jin;Park Jeong;Kim Jeong-Soo;Kim Sung-Cho;Kim Tae-Kwon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.279-282
    • /
    • 2006
  • Experiments in low strain rate methane-air counterflow diffusion flames diluted with $CO_2$ have been conducted to investigate the flame extinction behavior and edge flame oscillation The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations are categorized into three: a growing-, a decaying-, and a harmonic-oscillation mode.

  • PDF

Edge-flame Instability in A Low Strain-rate Counterflow Diffusion Flame (저신장율 대향류확산화염에서 에지화염 진동불안정성)

  • Park, June-Sung;Kim, Hyun-Pyo;Park, Jeong;Kim, Song-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.295-298
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate. It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation. Edge flame oscillations in low strain rate flames are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames.

  • PDF

Effects of Burner Distance on Flame Characteristics at Low Strain Rate Counterflow Edge Flames (저 신장율 대향류 확산화염에서 화염 특성에 관한 버너 간격 효과)

  • Yun, Jin-Han;Keel, Sang-In;Hwang, Dong-Jin;Choi, Yun-Jin;Ryu, Jung-In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • Experimental study is conducted to identify the existence of a shrinking flame disk and to clarify its flame characteristics through the inspection of critical mole fraction at flame extinction and edge flame oscillation at low strain rate flames. Experiments are made as varying global strain rate, velocity ratio, and burner distance. The transition from a shrinking flame disk to a flame hole is verified through gradient measurements of maximum flame temperature. The evidence of edge flame oscillation in flame disk is also provided through numerical simulation in microgravity. It is found at low strain rate flame disks in normal gravity that buoyancy effects are importantly contributing to lateral heat loss to burner rim, and is proven through critical mole fraction at flame extinction, edge flame oscillation, and measurements of flame temperature gradient along flame disk surface.

  • PDF

Behavior of the Edge Flame on Flame Extinction in Buoyancy minimized Methane-Air Non-premixed Counter Triple Co-flow Flames (부력을 최소화한 대향류 삼축 메탄-공기 비예혼합 화염 소화에서 에지화염의 거동)

  • Park, Jin Wook;Park, Jeong;Yun, Jin-Han;Keel, Sang-In
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.81-84
    • /
    • 2014
  • A Experimental study on flame extinction behavior was investigated using He curtain flow with counter triple co-flow burner. Buoyancy force was suppressed up to a microgravity level of $10^{-2}-10^{-3}g$ by using He curtain flow. The stability maps were provided with a functional dependency of diluent mole fraction and global strain rate to clarify the differences in flame extinction behavior. The flame extinction curves had C-shapes at various global strain rates. The oscillation and extinction modes were different each other in terms of the global strain rate, and the flames extinction modes could be classified into five modes such as (I) and (II): an extinction through the shrinkage of the outmost edge flame forward the flame center after self-excitation and without self-excitation, respectively, (III): an extinction through rapid advancement of a flame hole while the outmost edge flame is stationary, (IV): self-excitation occurs in the outermost edge flame and the center edge flame and then a donut shaped flame is formed and/or the flame is entirely extinguished, (V): shrinkage of the outermost edge flame without self-excitation followed by shrinkage or survival of the center flame. These oscillation and extinction modes could be identified well to the behavior of edge flame. The result also showed that the edge flame was influenced significantly by the conductive heat losses to the flame center or ambient He curtain flow.

  • PDF

A Study on Flame Extinction and Edge Flame Oscillation in Counterflow Diffusion Flame (대향류확산화염에서 화염소화와 에지화염진동에 관한 연구)

  • Park, Dae-Geun;Yun, Jin-Han;Park, Jeong;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.64-76
    • /
    • 2009
  • Experimental and numerical studies are conducted on the characteristics of flame extinction and edge flame oscillation in counterflow diffusion flames. The characteristics of flame extinction and edge flame oscillation are well described varying burner diameter, separation distance between two burners, global strain rate, and velocity ratio. It is verified numerically and experimentally that radial conduction heat loss significantly contributes to flame extinction and edge flame oscillation at low strain rate flames in zero- and micro-gravity. It is also shown that for appropriately small burner diameters flame extinction modes are grouped into four and these are significantly attributed to excessive radial conduction heat loss. The edge flame oscillation can be characterized well by one curve with Strouhal number and Peclet number.