• Title/Summary/Keyword: Edge Diffraction

Search Result 185, Processing Time 0.025 seconds

Development of X-ray PIV Technique and its Application to Blood Flow (X-ray PIV 기법의 개발과 혈액 유동에의 적용연구)

  • Kim, Guk Bae;Lee, Sang Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1182-1188
    • /
    • 2005
  • An x-ray PIV (Particle Image Velocimetry) technique was developed to measure quantitative information on flows inside opaque conduits and on opaque-fluid flows. At first, the developed x-ray PIV technique was applied to flow in an opaque Teflon tube. To acquire x-ray images suitable for PIV velocity field measurements, refraction-based edge enhancement mechanism was employed using detectable tracer particles. The optimal distance between with the sample and detector was experimentally determined. The resulting amassed velocity field data were in reasonable agreement with the theoretical prediction. The x-ray PIV technique was also applied to blood flow in a microchannel. The flow pattern of blood was visualifed by enhancing the diffraction/interference -bas ed characteristic s of blood cells on synchrotron x-rays without any contrast agent or tracer particles. That is, the flow-pattern image of blood was achieved by optimizing the sample (blood) to detector distance and the sample thickness. Quantitative velocity field information was obtained by applying PIV algorithm to the enhanced x-ray flow images. The measured velocity field data show a typical flow structure of flow in a macro-scale channel.

Fabrication of ZnO Nanorod/polystyrene Nanosphere Hybrid Nanostructures by Hydrothermal Method for Energy Generation Applications (에너지 발생소자응용을 위한 수열합성법기반 ZnO 나노로드/Polystylene 하이브리드 나노구조 제조)

  • Baek, Seong-Ho;Park, Il-Kyu
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.391-395
    • /
    • 2015
  • We report on the successful fabrication of ZnO nanorod (NR)/polystyrene (PS) nanosphere hybrid nanostructure by combining drop coating and hydrothermal methods. Especially, by adopting an atomic layer deposition method for seed layer formation, very uniform ZnO NR structure is grown on the complicated PS surfaces. By using zinc nitrate hexahydrate $[Zn(NO_3)_2{\cdot}6H_2O]$ and hexamine $[(CH_2)_6N_4]$ as sources for Zn and O in hydrothermal process, hexagonal shaped single crystal ZnO NRs are synthesized without dissolution of PS in hydrothermal solution. X-ray diffraction results show that the ZnO NRs are grown along c-axis with single crystalline structure and there is no trace of impurities or unintentionally formed intermetallic compounds. Photoluminescence spectrum measured at room temperature for the ZnO NRs on flat Si and PS show typical two emission bands, which are corresponding to the band-edge and deep level emissions in ZnO crystal. Based on these structural and optical investigations, we confirm that the ZnO NRs can be grown well even on the complicated PS surface morphology to form the chestnut-shaped hybrid nanostructures for the energy generation and storage applications.

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Study on the Properties of Catalase Activity Using Cuprite Nano-Particles Synthesized by Hydrolysis Method (가수분해법에 의해 제조된 아산화구리 나노분말을 이용한 과산화수소 탈수 연구)

  • Uhm, Y.-R.;Kim, W.-W.;Oh, J.-S.;Rhee, C.-K.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • $Cu_2O$ nano cubes with high catalase activity were synthesized by reduction of freshly prepared Cu in distilled water at $40^{\circC}$ and their catalase activities of $H_2O_2$ were studied. Transmission electron microscopy (TEM) observation showed that most of these nanocubes were uniform in size, with the average edge length of 30 nm. Selected area electron diffraction of TEM revealed that the nanocube consisted of single crystalline $Cu_2O$, but it changed to CuO phase. The catalase activity depends on the amount of both cuprite phase and surface area.

Synthesis and Photocatalytic Activity of TiO2/BiVO4 Layered Films under Visible Light Irradiation

  • Li, Xuan;Zhang, Zhuo;Zhang, Feng-Jun;Liu, Jin;Ye, Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.665-669
    • /
    • 2016
  • $TiO_2/BiVO_4$ layered films were prepared by sol-gel and spin coating methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Uv-vis spectroscopy were used to investigate the crystal structure, morphology and ultraviolet-visible absorption of the $TiO_2/BiVO_4$ films. The photocatalytic activity of the prepared films was inspected according to the degradation of methylene blue. The results show that the prepared films present a net chain structure; the absorption band edge had obvious red shift. The degradation of the methylene blue solution was about 80% after 300 mins using $TiO_2/BiVO_4$ layered films under visible light, which was stronger than when using only pure $TiO_2$ film and $BiVO_4$ film.

Growth and Characterization of Vertically Aligned ZnO nanowires with different Surface morphology

  • Das, S.N.;Choi, J.H.;Kar, J.P.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.35.1-35.1
    • /
    • 2009
  • Vertically aligned zinc oxide (ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate. The films thus prepared were characterized by measuring X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) studies. To study the effect of surface morphology on wettability, the contact angle (CA) of water was measured. It was demonstrated that the CA of the deposited ZnO NRs varied between $104^{\circ}$ and $135^{\circ}$ depending upon the surface morphology. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. The low-temperature PL characterizes the dominant near-band-edge excitonic emissions from such nanorod arrays.

  • PDF

Characterization of Al Doped ZnO Thin Films Prepared by RF Magnetron Sputtering Under Various Substrate Temperatures

  • Kim, Deok Kyu;Kim, Hong Bae
    • Applied Science and Convergence Technology
    • /
    • v.23 no.5
    • /
    • pp.279-283
    • /
    • 2014
  • Al doped ZnO thin films have been deposited by a RF magnetron sputtering technique from a ZnO (2 wt.% $Al_2O_3$) target onto glass substrates heated at temperature ranging from RT to $400^{\circ}C$. X-ray diffraction analysis shows that the deposits have a preferential growth along the c-axis of a hexagonal structure. The full with at half maximum decreases from 0.45 to $0.43^{\circ}$ in the studied temperature range. The root main square surface roughness increases with substrate temperature from 1.89 to 2.67 nm. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is red-shifted with substrate temperature from RT to $400^{\circ}C$. The sheet resistance increases from 92 ohm/sq to 419 ohm/sq when the deposition temperature increases from RT to $400^{\circ}C$. The increment of sheet resistance is caused by lowered carrier concentration resulting from an increase in surface roughness.

The Effects of Acid Treatment of Bentonite on Its Crystal Structure (산처리 과정에 따른 벤토나이트의 결정구조 변화)

  • Yoon, Soh-Joung;Moon, Hi-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.507-521
    • /
    • 1994
  • Bentonite occurs in the Janggi Conglomerate of Tertiary age and consists mainly of montmorillonite with Mg as predominant interlayer cations. The bentonite was reacted with various concentrations of sulfuric acid (0.8~1.5M) for various reaction time (1-10h) at $103^{\circ}C$. Cation exchange capacity, exchangeable cations, surface area and solid acidity of the original bulk and acid activated bentonites were measured. Chemical analysis, X-ray diffraction, differential thermal analysis and infrared spectroscopy were used to characterize the changes in structure and properties of the acid activated bentonite. The dissolution of octahedral cations occurs not only from the edge of the clay platelets but also throughout the whole clay structure creating vacant octahedral sites. These lattice defects are created by $H^+$ diffused into the smectite layers. The cations leached possibly from the octahedral sheets are adsorbed on the interlayer exchange sites. They are exchanged with hydronium ions again by stronger acid attack. These reactions create wedge-shaped pores resulting in the increase of the surface area and the changes the morphology in the lattice structure.

  • PDF

Effects of Chloride Concentration on Zinc Electroplating (염화물의 농도가 전기아연도금에 미치는 영향)

  • Kim, Jae-Min;Lee, Jung-Hoon;Kim, Yong-Hwan;Kim, Young-Ha;Hong, Moon-Hi;Jeong, Hwon-Woo;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • The zinc electroplating with respect to the chloride concentration was investigated by X-ray diffraction(XRD), scanning electron microscope (SEM), and cathodic polarization measurement. The cathodic overpotential during electroplating was first decreased and then increased with increase of chloride concentration in electrolyte. The decreased cathodic overpotential leads to preferred orientation of (002) plane, high current efficiency and satisfactory zinc deposits. The increased cathodic overpotential causes random orientation, low current efficiency and edge burning. The cathodic overpotential was affected by chloride concentration in electrolyte, not by the kind of chloride, such as NaCl and KCl. An optimized chloride concentration was 3 M for zinc electroplating. Also, it is considered that NaCl can be a alternation for KCl as a main salt of zinc electroplating bath.

A Study of Growth and Properties of GaN films on Si(111) by MOCVD (Si(111) 기판을 이용한 crack-free GaN 박막 성장과 PL특성)

  • Kim, Deok-Kyu;Jin, Hu-Jie;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.187-188
    • /
    • 2005
  • The characteristics of GaN epitaxial layers grown on silicon (111) substrates by metalorganic vapor phase epitaxy have been investigated. The only control of AlN thickness was found to decrease the stress sufficiently for avoiding crack formation in an overgrown thick ($2.6{\mu}m$) GaN layer. X-ray diffraction and photoluminescence measurements are used to determine the effect of AlN thickness on the strain in the subsequent GaN layers. Strong band edge photoluminescence of GaN on Si(111) was observed with a full width at half maximum of the bound exciton line as low as 17meV at 13K.

  • PDF