• Title/Summary/Keyword: Edge Analysis

Search Result 2,464, Processing Time 0.038 seconds

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.

Estimation of Chlorophyll-a Concentration in Nakdong River Using Machine Learning-Based Satellite Data and Water Quality, Hydrological, and Meteorological Factors (머신러닝 기반 위성영상과 수질·수문·기상 인자를 활용한 낙동강의 Chlorophyll-a 농도 추정)

  • Soryeon Park;Sanghun Son;Jaegu Bae;Doi Lee;Dongju Seo;Jinsoo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.655-667
    • /
    • 2023
  • Algal bloom outbreaks are frequently reported around the world, and serious water pollution problems arise every year in Korea. It is necessary to protect the aquatic ecosystem through continuous management and rapid response. Many studies using satellite images are being conducted to estimate the concentration of chlorophyll-a (Chl-a), an indicator of algal bloom occurrence. However, machine learning models have recently been used because it is difficult to accurately calculate Chl-a due to the spectral characteristics and atmospheric correction errors that change depending on the water system. It is necessary to consider the factors affecting algal bloom as well as the satellite spectral index. Therefore, this study constructed a dataset by considering water quality, hydrological and meteorological factors, and sentinel-2 images in combination. Representative ensemble models random forest and extreme gradient boosting (XGBoost) were used to predict the concentration of Chl-a in eight weirs located on the Nakdong river over the past five years. R-squared score (R2), root mean square errors (RMSE), and mean absolute errors (MAE) were used as model evaluation indicators, and it was confirmed that R2 of XGBoost was 0.80, RMSE was 6.612, and MAE was 4.457. Shapley additive expansion analysis showed that water quality factors, suspended solids, biochemical oxygen demand, dissolved oxygen, and the band ratio using red edge bands were of high importance in both models. Various input data were confirmed to help improve model performance, and it seems that it can be applied to domestic and international algal bloom detection.

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Analyzing Self-Introduction Letter of Freshmen at Korea National College of Agricultural and Fisheries by Using Semantic Network Analysis : Based on TF-IDF Analysis (언어네트워크분석을 활용한 한국농수산대학 신입생 자기소개서 분석 - TF-IDF 분석을 기초로 -)

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Kim, S.H.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.1
    • /
    • pp.89-104
    • /
    • 2021
  • Based on the TF-IDF weighted value that evaluates the importance of words that play a key role, the semantic network analysis(SNA) was conducted on the self-introduction letter of freshman at Korea National College of Agriculture and Fisheries(KNCAF) in 2020. The top three words calculated by TF-IDF weights were agriculture, mathematics, study (Q. 1), clubs, plants, friends (Q. 2), friends, clubs, opinions, (Q. 3), mushrooms, insects, and fathers (Q. 4). In the relationship between words, the words with high betweenness centrality are reason, high school, attending (Q. 1), garbage, high school, school (Q. 2), importance, misunderstanding, completion (Q.3), processing, feed, and farmhouse (Q. 4). The words with high degree centrality are high school, inquiry, grades (Q. 1), garbage, cleanup, class time (Q. 2), opinion, meetings, volunteer activities (Q.3), processing, space, and practice (Q. 4). The combination of words with high frequency of simultaneous appearances, that is, high correlation, appeared as 'certification - acquisition', 'problem - solution', 'science - life', and 'misunderstanding - concession'. In cluster analysis, the number of clusters obtained by the height of cluster dendrogram was 2(Q.1), 4(Q.2, 4) and 5(Q. 3). At this time, the cohesion in Cluster was high and the heterogeneity between Clusters was clearly shown.

Optimization of the Flip Angle and Scan Timing in Hepatobiliary Phase Imaging Using T1-Weighted, CAIPIRINHA GRE Imaging

  • Kim, Jeongjae;Kim, Bong Soo;Lee, Jeong Sub;Woo, Seung Tae;Choi, Guk Myung;Kim, Seung Hyoung;Lee, Ho Kyu;Lee, Mu Sook;Lee, Kyung Ryeol;Park, Joon Hyuk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Purpose: This study was designed to optimize the flip angle (FA) and scan timing of the hepatobiliary phase (HBP) using the 3D T1-weighted, gradient-echo (GRE) imaging with controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) technique on gadoxetic acid-enhanced 3T liver MR imaging. Materials and Methods: Sixty-two patients who underwent gadoxetic acid-enhanced 3T liver MR imaging were included in this study. Four 3D T1-weighted GRE imaging studies using the CAIPIRINHA technique and FAs of $9^{\circ}$ and $13^{\circ}$ were acquired during HBP at 15 and 20 min after intravenous injection of gadoxetic acid. Two abdominal radiologists, who were blinded to the FA and the timing of image acquisition, assessed the sharpness of liver edge, hepatic vessel clarity, lesion conspicuity, artifact severity, and overall image quality using a five-point scale. Quantitative analysis was performed by another radiologist to estimate the relative liver enhancement (RLE) and the signal-to-noise ratio (SNR). Statistical analyses were performed using the Wilcoxon signed rank test and one-way analysis of variance. Results: The scores of the HBP with an FA of $13^{\circ}$ during the same delayed time were significantly higher than those of the HBP with an FA of $9^{\circ}$ in all the assessment items (P < 0.01). In terms of the delay time, images at the same FA obtained with a 20-min-HBP showed better quality than those obtained with a 15-min-HBP. There was no significant difference in qualitative scores between the 20-min-HBP and the 15-min-HBP images in the non-liver cirrhosis (LC) group except for the hepatic vessel clarity score with $9^{\circ}$ FA. In the quantitative analysis, a statistically significant difference was found in the degree of RLE in the four HBP images (P = 0.012). However, in the subgroup analysis, no significant difference in RLE was found in the four HBP images in either the LC or the non-LC groups. The SNR did not differ significantly in the four HBP images. In the subgroup analysis, 20-min-HBP imaging with a $13^{\circ}$ FA showed the highest SNR value in the LC-group, whereas 15-min-HBP imaging with a $13^{\circ}$ FA showed the best value of SNR in the non-LC group. Conclusion: The use of a moderately high FA improves the image quality and lesion conspicuity on 3D, T1-weighted GRE imaging using the CAIPIRINHA technique on gadoxetic acid, 3T liver MR imaging. In patients with normal liver function, the 15-min-HBP with a $13^{\circ}$ FA represents a feasible option without a significant decrease in image quality.

NIRS Calibration Equation Development and Validation for Total Nitrogen Contents Field Analysis in Fresh Rice Leaves (벼 생엽의 질소함량 현장분석을 위한 NIRS 검량식 개발 및 검증)

  • Song, Young-Eun;Lee, Deok-Ryeol;Cho, Seong-Hyun;Lee, Ki-Kwon;Jeong, Jong-Seong;Gwon, Yeong-Rip;Cho, Kyu Chae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.3
    • /
    • pp.301-307
    • /
    • 2013
  • This study was evaluated high end research grade Near Infrared Reflectance Spectrophotometer (NIRS) to field grade multiple Near Infrared Reflectance Spectrophotometer (NIRS) for rapid analysis at fresh rice leaf at sight with 238 samples of fresh rice leaf during year 2012, collected Jeollabuk-do for evaluate accuracy and precision between instruments. Firstly collected and build database high end research grade NIRS using with 400 nm ~ 2500 nm during from year 2003 to year 2009, seven years collected fresh rice leaf database then trim and fit to field grade NIRS with 1200 nm ~ 2400 nm then build and create calibration, transfer calibration with special transfer algorithm. The result between instruments was 0.005% differences, rapidly analysis for chemical constituents, Total nitrogen in fresh rice leaf within 5 minutes at sight and the result equivalent with laboratory data. Nevertheless last during more than 8 years collected samples for build calibration was organic samples that make differentiate by local or yearly bases etc. This strongly suggest population evaluation technique needed and constantly update calibration and maintenance calibration to proper handling database accumulation and spread out by knowledgable control laboratory analysis and reflect calibration update such as powerful control center needed for long lasting usage of fresh rice leaf analysis with NIRS at sight. Especially the agriculture products such as rice will continuously changes that made easily find out the changes and update routinely, if not near future NIRS was worthless due to those changes. Many research related NIRS was shortly study not long term study that made not well using NIRS, so the system needed check simple and instantly using with local language supported signal methods global distance (GD) and neighbour distance (ND) algorithm. Finally the multiple popular field grades instruments should be the same results not only between research grade instruments but also between multiple field grade instruments that needed easily transfer calibration and maintenance between instruments via internet networking techniques.

Analysis of Landscape Structure Change for Riparian Buffer Zone KyangAn Watershed (경안천 유역 수변구역 경관구조 변화 분석)

  • Kim, Kyung-Tak;Kim, Joo-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.74-83
    • /
    • 2005
  • The Riparian Buffer Zone has many potential values including the preservation of water quality as well as being ecologically friendly. This study aims to quantitatively analyze the landscape structure index of the Riparian Buffer Zone in the Kyoung-an stream and to produce base information necessary for proper management. The study used aerial images that were applied to geometric corrections for a time series from 1966 to 2000 for land data and also used FRAGSTATS, which is a type of ARCVIEW extension module, as an analysis tool. An analysis of land use change and the Landscape Index revealed that the area of farm land has decreased and that the area of residential property has increased. In addition, there was a slight change for land used for purposes other than farming or for residence. The results of analyzing the Landscape Structure Index, revealed that the NP has increased from 437 in 1966 to 695 in 2000. This data reveals that the change of land use is influenced by various artificial factors. The NPS, which represents the declining degree of patch, decreased from 9.441 to 5.934, revealing that the change of land use has been progressing considerably. In regard to forest areas, land use reduced somewhat but did not indicate a significant change. Therefore, an analysis of the total index reveals that the edge of patch has become more complicated and that the variation index of patch has increased significantly. However, this study reveals that barriers to block pollution have weakened as a result and that there is a need to concentrate on the implementation and the management of the Riparian Buffer Zone. Consequently, this study reveals that substantial research is necessary in order to carry out the proper management of the Riparian Buffer Zone, especially in light of the distribution type of each patch and the change in conditions regarding them.

  • PDF

Case Study on Revising Curriculum of a Industrial High School through Analysis of Manufacturing Workforce demand focused on Chungnam Province in Korea (지역 기반 산업의 인력 수요 분석을 통한 공업 계열 특성화 고등학교의 교육과정 개편 사례 연구)

  • Yi, Sangbong;Choi, Jiyeon
    • 대한공업교육학회지
    • /
    • v.38 no.1
    • /
    • pp.221-238
    • /
    • 2013
  • The purpose of this study was to revise and reorganize the direction of the department of ${\bigcirc}{\bigcirc}$Industrial High School though analysis of manufacturing status and workforce demand in Chungnam province focused on the Geumsan Area. In the study, ${\bigcirc}{\bigcirc}$Industrial High School of the status and actual conditions were identified through interview, literature review and data analysis. Surveys of the school teachers, parents and students was conducted in order to investigate the awareness of renaming and reorganization of school departments, curriculum revision of the school. Statistical data was collected and analyzed in order to figure out manufacturing industry and its workforce demand of Chungnam Province in Korea. Findings of the study were as follows: Small and medium enterprises of manufacturing industry have been developed a lot in Geumsan Area in Chungnam province. Four major industries including (1) automobile parts, (2) electronic and information equipment, (3) Cutting edge culture, and (4) Agricultural-livestock and bio are intensively fostered as regional strategic industries in the Chungnam province. The manufacturing industry has a 33.6-percent, and then service-mining and manufacturing industry has a 80.0-percent of total number of employee in Geumsan Area. It is expected that industrial workforce demand of Geumsan Area come out of manufacturing and service-mining industrial sector. The following is recommended for the school curriculum revision: (1) focussing on mechanical control for the revision of computer applying mechanical department, (2) focussing on automation electric equipment for the revision of electric control department, (3) focussing on food process control for revising of bio-food industrial department. It's helpful to make a progress of the school that establish identification of industrial specialized high school as an institution of vocational education at the secondary level through supplying qualified workforce to Manufacturing industry in Chungnam Province.

Transfer and Validation of NIRS Calibration Models for Evaluating Forage Quality in Italian Ryegrass Silages (이탈리안 라이그라스 사일리지의 품질평가를 위한 근적외선분광 (NIRS) 검량식의 이설 및 검증)

  • Cho, Kyu Chae;Park, Hyung Soo;Lee, Sang Hoon;Choi, Jin Hyeok;Seo, Sung;Choi, Gi Jun
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.81-90
    • /
    • 2012
  • This study was evaluated high end research grade Near infrared spectrophotometer (NIRS) to low end popular field grade multiple Near infrared spectrophotometer (NIRS) for rapid analysis at forage quality at sight with 241 samples of Italian ryegrass silage during 3 years collected whole country for evaluate accuracy and precision between instruments. Firstly collected and build database high end research grade NIRS using with Unity Scientific Model 2500X (650 nm~2,500 nm) then trim and fit to low end popular field grade NIRS with Unity Scientific Model 1400 (1,400 nm~2,400 nm) then build and create calibration, transfer calibration with special transfer algorithm. The result between instruments was 0.000%~0.343% differences, rapidly analysis for chemical constituents, NDF, ADF, and crude protein, crude ash and fermentation parameter such as moisture, pH and lactic acid, finally forage quality parameter, TDN, DMI, RFV within 5 minutes at sight and the result equivalent with laboratory data. Nevertheless during 3 years collected samples for build calibration was organic samples that make differentiate by local or yearly bases etc. This strongly suggest population evaluation technique needed and constantly update calibration and maintenance calibration to proper handling database accumulation and spread out by knowledgable control laboratory analysis and reflect calibration update such as powerful control center needed for long lasting usage of forage analysis with NIRS at sight. Especially the agriculture products such as forage will continuously changes that made easily find out the changes and update routinely, if not near future NIRS was worthless due to those changes. Many research related NIRS was shortly study not long term study that made not well using NIRS, so the system needed check simple and instantly using with local language supported signal methods Global Distance (GD) and Neighbour Distance (ND) algorithm. Finally the multiple popular field grades instruments should be the same results not only between research grade instruments but also between multiple popular field grade instruments that needed easily transfer calibration and maintenance between instruments via internet networking techniques.