• Title/Summary/Keyword: Eddy structure

Search Result 284, Processing Time 0.027 seconds

Strategic Utilization of Soft Magnetic Composite in a High-Speed Switched Reluctance Machine Depending on a Loss Pattern (손실 패턴에 따른 고속 스위치드 릴럭턴스 전동기의 SMC 분말을 이용한 효율 개선)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.323-327
    • /
    • 2017
  • Soft magnetic composite (SMC) material has recently received a significant attention in the area of high-speed machines because of its unique properties such as good design flexibility and low eddy current loss. However, SMC's electromagnetic property is poor compared to silicon steel in terms of saturation, relative permeability, and hysteresis loss. This paper presents a technique for utilization of SMC in two strategic designs of a switched reluctance machine (SRM) depending on a loss pattern. To investigate the effect of SMC's merits and demerits, the stator material is changed from laminated steel to SMC.

Variation characteristics of water masses by advection of Tsushima Warm Current in southern part of the East Sea in June, 1996.

  • Lee, Chung-Il;Cho, Kyu-Dae
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.242-243
    • /
    • 2001
  • Tsushima Warm Current(WD entering into the East Sea through the Korean Strait flows northeastward and during this travel it shows complicated movement like meandering and eddy. It is considered that these variations of TWC are important causes making water masses unstable and also have influence on biological and chemical properties of water masses. Lee and Cho(2000) suggested that meandering of TWC in adjacent waters of Noto peninsula has much influence on fluctuation of current structure. (omitted)

  • PDF

Natural Convection in the Annulus between Concentric Inclined Cylinders (경사진 동심원통 사이의 환상공간에서 자연대류 열전달)

  • Kim, Chan-Won;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.53-60
    • /
    • 1987
  • Natural convection in the annulus between concentric inclined cylinders has been studied by the numerical analysis. Governing equations are numerically solved by means of successive over-relaxation methods for a range in orientation from horizontal to vertical. It is found that flow patterns can also be observed the co-axial double spiral. As the angle of inclination is increased, the center of the eddy is shifted into the lower part of annulus and flow structure is apparently changed. In the present study, the maximum local Nusselt numbers for the inner and outer walls at the vertical cylinder increase more than those at the horizontal cylinder by 71%, 42% respectively. Consequently the effect of inclination on the heat transfer is considerably large.

  • PDF

Wind-induced response of open type hyperbolic-parabolic membrane structures

  • Xu, Junhao;Zhang, Yingying;Zhang, Lanlan;Wu, Meng;Zhou, Yi;Lei, Ke;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.269-278
    • /
    • 2020
  • In this paper, the mechanical characteristics of the open type hyperbolic-parabolic membrane structure under wind load were investigated. First, the numerical simulation of a typical plane membrane structure was performed based on the Large-Eddy Simulation method. The accuracy of the simulation method was validated by the corresponding wind tunnel test results. Then, the wind load shape coefficients of open type hyperbolic-parabolic membrane structures are obtained from the series of numerical calculations and compared with the recommended values in the "Technical Specification for Membrane Structures (CECS 158: 2015). Finally, the influences of the wind directions and wind speeds on the mean wind pressure distribution of open type hyperbolic-parabolic membrane structures were investigated. This study aims to gain a better understanding of the wind-induced response for this type of structure and be useful to engineers and researchers.

Physical Characteristics and Classification of the Ulleung Warm Eddy in the East Sea (Japan Sea) (동해 울릉 난수성 소용돌이의 물리적 특성 및 분류)

  • SHIN, HONG-RYEOL;KIM, INGWON;KIM, DAEHYUK;KIM, CHEOL-HO;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.298-317
    • /
    • 2019
  • The physical characteristics of the Ulleung Warm Eddy (UWE) and its relationship with the East Korea Warm Current (EKWC) were analyzed using the CMEMS (Copernicus Marine Environment Monitoring Service) satellite altimetry data and the CTD data of the National Institute of Fisheries Science (NIFS) near the Ulleung Basin from 1993 to 2017. The distribution of the UWEs coupled with EKWC accounts for 81% of the total number of the UWEs. Only 7% of the total eddies are completely separated from the EKWC. The UWE has the characteristics of high temperature and high salinity water inside of it when it is formed from the EKWC. However, when the UWE is wintering, its internal structure changes greatly. In the winter, surface homogeneous layer of $10^{\circ}C$ and 34.2 psu inside of the UWE is produced by vertical convection from sea-surface cooling, and deepened to a maximum depth of approximately 250 m in early spring. In summer, the UWE changes into a structure with a stratified structure in the upper layer within a depth of 100 m and a homogeneous layer made in winter in the lower layer. 62 UWEs were produced for 25 years from 1993 to 2017. on average, 2.5 UWEs were formed annually, and the average life span was 259 days (approximately 8.6 months). The average size of the UWEs is 98 km in the east-west direction and 109 km in the north-south direction. The average size of UWE using satellite altimetric data is estimated to be 1~25 km smaller than that using water temperature cross-sectional data.

Investigation of the Prediction Performance of Turbulence and Combustion Models for the Turbulent Partially-premixed Jet Flame (난류 부분예혼합 제트화염에 대한 난류 및 연소모델의 예측성능 검토)

  • Kim, Yu Jeong;Oh, Chang Bo
    • Fire Science and Engineering
    • /
    • v.28 no.4
    • /
    • pp.35-43
    • /
    • 2014
  • The prediction performance of 9 model sets, which combine 3 turbulent models and 3 combustion models, was investigated numerically for turbulent partially-premixed jet flame. The standard ${\kappa}-{\varepsilon}$ (SKE), Realizable ${\kappa}-{\varepsilon}$ (RKE) and Reynolds stress model (RSM) were used as a turbulence model, and the eddy dissipation concept (EDC), steady laminar flamelet (SLF) and unsteady laminar flamelet model (ULF) were also adopted as a combustion model. The prediction performance of those 9 model sets was evaluated quantitatively and qualitatively for Sandia D flame of which flame structure was measured precisely. The flame length was predicted as, from longest to shortest, RSM > SKE > RKE, and the RKE predicted the flame length of the jet flame much shorter than experiment. The flame temperature was over predicted by the combination of RSM + SLF or RSM + ULF while the flame length obtained by RSM + SLF and RSM + ULF was well agreed with the experiment. The combination of SKE + SLF and SKE + ULF predicts well the flame length as well as the temperature distribution. The SKE turbulence model was most superior to the other turbulent models, and SKE + ULF showed the best prediction performance for the structure of turbulent partially-premixed jet flame.

On Reasonable Boundary Condition for Inclined Seabed/Structure in Case of the Numerical Model with Quadrilateral Mesh System (사각격자체계 수치모델에서의 경사면 처리기법에 관하여)

  • Hur, Dong-Soo;Lee, Woo-Dong;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.591-594
    • /
    • 2008
  • Present study aims at the development of a reasonable boundary condition for a structure over inclined seabed in case of the numerical model with quadrilateral mesh system. The technique for the inclined impermeable/permeable boundary in the quadrilateral mesh is newly proposed. The new technique and LES-WASS-3D model (Hur and Lee, 2007) have been used for the investigation of the dynamics of fluid field, and validated through the comparison with a typical stair-type boundary condition. 3-Dimensional numerical model with Large Eddy Simulation is called LES-WASS-3D, and is able to simulate directly interaction of WAve Structure Sea bed/Sandy beach.

Power Stage Design for a Surface Wireless Power Transmission System using a Coupled Electric Field (전계결합을 이용한 면대면 무선 에너지 전송회로 개발)

  • Choi, Sung-Jin;Kim, Se-Yeong;Choi, Byung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Conventional wireless power transfer methods based on coupled magnetic fields need a complex winding structure on the surface of the energy transfer and shows poor efficiency near metal objects due to the eddy current effect. In this study, to mitigate these problems, we investigate an electric field-coupled power transmission system, which is less prone to metal object problems and EMI. Because of the fundamental physical limit in the size of link capacitances, a half-bridge converter with an impedance matching transformer is proposed and the design procedure is derived to provide a soft-switching scheme. Hardware implementation shows that the proposed scheme with a pair of 10cm by 10cm copper plate can power a 1.4W USB FAN in a separation of 0.2mm by using insulating paper when driven by 227 kHz gate pulse.

Numerical Study of Preventive Hydraulic Structure for Landforming (하도 육역화 방지를 위한 수공구조물에 대한 연구)

  • Yeo, Chang-Geon;Im, Jang-Hyuk;Lee, Seung-Oh;Song, Jae-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.718-722
    • /
    • 2009
  • 하도 상황이 수역(水域)에서 식생역(植生域)으로 변화하여 최종적으로 육역화(陸域化)단계로의 천이가 진행되는 현상을 하도 육역화라고 한다. 하도 육역화는 하천의 생태환경적 측면에서 많은 문제들을 야기할 수 있으며, 단일 단면 하도의 복단면 고착화로 하천 통수 단면이 감소하여 하도의 홍수 관리 기능에 심각한 위해 요소로 작용할 수 있다. 본 연구는 하도 육역화 방지를 위한 수공구조물로서 말뚝을 설치하고 그 효과를 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 수치 모의는 구조물 주변의 복잡한 흐름 모의를 위하여 복잡한 지형지물이 있는 경우에 많이 활용되는 LES(Large Eddy Simulation) 난류 모델을 적용하였으며 세굴 및 퇴적 영향을 알아보기 위하여 유사 세굴(Sediment Scour) 모델을 적용하였다. 하도 육역화 방지 수공구조물의 효과 검토를 위하여 모형 수로의 제방 근처에 말뚝을 설치하고 말뚝직경, 설치 간격 및 배열 등을 변화시켜 구조물 주변의 동수역학적 거동, 흐름분리 효과 및 세굴영향을 수치모의를 통하여 분석하였다. 분석 결과 말뚝에 의한 흐름 분리와 국부 세굴에 의하여 하상 퇴적이 상대적으로 감소되는 효과를 나타냈으며 설치간격이 수변으로부터 말뚝 두께의 2배 그리고 흐름방향으로 말뚝 두께의 2배 이내의 간격으로 설치하여야 더욱 효과적인 것으로 나타났다. 추후 다양한 수리모형 실험을 통한 검증과 다양한 조건에 대한 수치 모의를 통하여 하도 육역화 방지 기술을 개발할 수 있을 것으로 사료된다.

  • PDF

Analysis of transport current loss considering the conductive layer of YBCO wires (도전성이 높은 안정화층을 고려한 YBCO 선재의 전송전류 손실 해석)

  • Kang, Myung-Hun;Han, Byung-Wook;Jung, Du-Young;Lim, Hee-Hyun;Lim, Hyoung-Woo;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.191-193
    • /
    • 2006
  • YBCO wire has a metal substrate to improve the texture structure and highly conductive layers to increase the cryogenic stability. When AC current flows in the YBCO wire, magnetic field which is generated by the AC current magnetizes the metal substrate and induces the eddy current in the stabilizing layer. To examine the effect of the metal substrate and the conducting layer on the transport current loss of YBCO wire, this paper presents the transport current loss of YBCO wire which has metal substrate and conductive layer. YBCO wire with Ni-W substrate and copper layer were chosen as the model HTS wire for numerical calculation. Finite element method has been used to calculate the transport loss and the results of numerical calculation was compared with analytic calculation suggested by Norris.

  • PDF