• Title/Summary/Keyword: Eddy loss

Search Result 246, Processing Time 0.031 seconds

Study on the High Efficiency Design through the Loss Reduction of the 110kW Class High-output Density PMSM (110kW급 고출력 밀도형 PMSM의 손실 저감을 통한 고효율 설계에 대한 연구)

  • Jun, Hyun-Woo;Park, Eung-Seok;Lee, Ju;Lee, Hyung-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.6
    • /
    • pp.954-959
    • /
    • 2015
  • In this paper, 110kW high output density, high efficiency Permanent Magnet Synchronous Motor which can be applied on tram’s traction system is introduced, along with its output and loss characteristics. The motor model is 2pole 18slot model and its size has been reduced through the high speed for high output density. Especially, structure and retainer sleeve structure is applied to its structure, which is also appropriate for high speed rotation. This kind of structure has eddy current loss problem on the surface of rotor, which must be reduced for high output density design. This study has designed the most optimized additional design parameter in order to improve the output characteristics and efficiency of previous produced 2pole 18 slot 110kW motor model and how the width of airgap affects from the loss perspective is mainly analyzed. Finally, the analysis on the extent of the efficiency improvement effect compared to the previous model has performed through electromagnetic FEM analysis. The influence of airgap flux density distribution has also been thoroughly examined.

Analysis of Efficiency and Loss due to Number of Poles in Magnetic Gears (마그네틱 기어의 극수 변화에 따른 효율 및 손실 분석)

  • Kim, Seung-Hyun;Kim, Dong-Wook;Lee, Do-Yeop;Gim, Chan-Seung;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1023-1028
    • /
    • 2018
  • Mechanical gears driven by direct contact have problems including noise, vibration and heat. In order to, solve these problems, magnetic gears having a non-contact magnetic coupling have been proposed. Through various studies on magnetic gears, we found that losses are changed when the number of magnetic poles varies in the same gear ratio. For this reason, research team expect the iron loss of the magnetic gear and the Eddy current loss of the permanent magnet will have a certain tendency depending on the number of poles. This paper identified the magnetic gear's loss tendency according to the number of poles, and laid the basis for efficiency improvement design.

Thermal Analysis using Thermal Equivalent Circuit Analysis and Finite Element Method of In-wheel Motor (In-wheel 전동기의 열 등가회로 해석 및 유한요소해법을 이용한 열해석)

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Hong, Jung-Pyo;Nam, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.941-942
    • /
    • 2011
  • A thermal equivalent circuit of IPMSM considering eddy current loss of PM and core loss of rotor is proposed. This thermal equivalent model is represented by the thermal resistances and thermal capacitances. In order to determine the factor of each parameter, a heating test is processed. Additionally, the eddy current loss of PM is calculated by a transient 3D finite element analysis. Finally, this thermal equivalent model is verified by a temperature test in a 25kW 12-pole/18-slot IPMSM with varying load.

  • PDF

A study or Metallic sheath for Extra-high voltage XLPE cable (초고압 XLPE 케이블 금속 차폐층 고찰)

  • Choi, C.S.;Lee, K.J.;Chung, M.Y.;Kwon, B.I.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1652-1654
    • /
    • 1994
  • The Extra-high voltage XLPE cable is characterized by low transmission loss, large capacity, and high reliability. Conventionally, for XLPE cables of l54kV and above, aluminium sheath was used to be moisture barrier (thus preventing water tree deterioration of the insulation) and to protect cable core from physical stresses. However, as transmission capacity of the cable increases, so does the cable diameter and the corresponding aluminium sheath outer diameter and thickness. As a result, eddy-current loss in the sheath is increased, limiting the maximum current capacity of the cable itself. As an alternative to aluminium sheath, we have adopted stainless steel sheath with non-magnetic properties and a large resistivity, The new XLPE cable with stainless-steel sheath (CSZV cable) has drastically reduced eddy-current loss in the sheath.

  • PDF

Core-loss Reduction on Permanent Magnet for IPMSM with Concentrated Winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.2
    • /
    • pp.135-140
    • /
    • 2012
  • Interior Permanent Magnet Synchronous motors (IPMSM) with concentrated winding are superior to distributed winding in the power density point of view. But it causes huge amount of eddy current losses on the permanent magnet. This paper presents the optimal permanent magnet V-shape on the rotor of an interior permanent magnet synchronous motor to reduce the core losses and improve the performance. Each eddy current loss on permanent magnet has been investigated in detail by using FEM (Finite Element Method) instead of equivalent magnetic circuit network method in order to consider saturation and non-linear magnetic property. Simulation-based design of experiment is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, it is verified by FEM.

Analysis of Eddy Current Loss on Permanent Magnets of Interior Permanent Magnet Synchronous Motor for Railway Transit (철도차량용 매입형 영구자석 동기전동기의 영구자석 와전류 손실 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2310-2316
    • /
    • 2011
  • In order to apply Interior Permanet Magnet Synchronous Motor(IPMSM) to the propulsion system of the railway transit, 110 (kW) class IPMSMs with high-power density are designed as a concentrated winding model and a distributed winding model in this study. The concentrated winding model designed in this study is 6 poles/9 slots and the distributed winding model is 6 poles/36 slots. In general, the eddy current losses in the permanent magnets of IPMSM are caused by the slot harmonics. The thermal demagnetization of the magnet by the eddy current losses at high rotational speed often becomes one of the major problems in the IPMSM with a concentrated windings especially. A design to reduce eddy current losses in permanent magnets design is important in IPMSM for the railway vehicle propulsion system which requires high-speed operation. Therefore, a method to devide the permanent magnet is proposed to reduce the eddy current losses in permanent magnet in this study. Authors analyze the variation characteristics of the eddy current losses generated in permanent magnet of the concentrated winding model by changing the number of the division of the permanent magnets.

  • PDF

A Novel Claw Pole Eddy Current Load for Testing a DC Counter Rotating Motor Part I: Construction

  • Kanzi, Khalil;Dehafarin, Abolfazl;Roozbehani, Sam;Kanzi, Majid;Vasheghani, Qasem
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-329
    • /
    • 2012
  • Providing variable load for testing a motor in high speed conditions is usually a difficult task. The eddy current brake can be used in application of load testing of motors. This paper deals with construction of a novel claw pole eddy current brake which is employed as a load for a DC counter rotating motor (CRM). These kinds of motors have two inner and outer shafts that rotate in opposite directions simultaneously, which are particularly suitable for under water propulsion systems. The prototype 45KW eddy current brake consists of two parts. One of them is installed on the inner shaft of the 60KW DC CRM and the other one is installed on its outer shaft. The simulation and experimental results with prototype brakes are also analyzed by using MATLAB/Simulink and the operational characteristic of the brake is demonstrated as a function of the motor speed and current of the magnetic poles.

Core-loss reduction on PM for IPMSM with concentrated winding (집중권을 시행한 영구자석 매입형 동기전동기의 철손 저감)

  • Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1832-1837
    • /
    • 2011
  • This paper presents the optimal permanent magnet shape on the rotor of an interior permanent magnet motor to reduce the core losses and improve the performance. As permanent magnet has conductivity inherently, it causes huge amount of eddy current losses by the slot harmonics with concentrated winding. This loss is roughly 100 times larger than that of distributed winding in high speed operation and it cannot be ignored, especially on traction motors. Each eddy current loss on permanent magnet has been investigated in detail by using FEM(Finite Element Method) instead of EMCNM(Equivalent Magnetic Circuit Network Method) in order to consider saturation and non-linear magnetic property. Simulation-based DOE(Design Of Experiment) is also applied to avoid large number of analyses according to each design parameter and consider expected interactions among parameters. Consequently, the optimal design to reduce the core loss on the permanent magnet while maintaining or improving motor performance is proposed by an optimization algorithm using regression equation derived and lastly, the core loss reduction on the proposed shape of the permanent magnet is verified by FEM.

  • PDF

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

A large eddy simulation on the effect of buildings on urban flows

  • Zhang, Ning;Jiang, Weimei;Miao, Shiguang
    • Wind and Structures
    • /
    • v.9 no.1
    • /
    • pp.23-35
    • /
    • 2006
  • The effect of buildings on flow in urban canopy is one of the most important problems in local/micro-scale meteorology. A large eddy simulation model is used to simulate the flow structure in an urban neighborhood and the bulk effect of the buildings on surrounding flows is analyzed. The results demonstrate that: (a) The inflow conditions affect the detailed flow characteristics much in the building group, including: the distortion or disappearance of the wake vortexes, the change of funneling effect area and the change of location, size of the static-wind area. (b) The bulk effect of the buildings leads to a loss of wind speed in the low layer where height is less than four times of the average building height, and this loss effect changes little when the inflow direction changes. (c) In the bulk effect to environmental fields, the change of inflow direction affects the vertical distribution of turbulence greatly. The peak value of the turbulence energy appears at the height of the average building height. The attribution of fluctuations of different components to turbulence changes greatly at different height levels, in the low levels the horizontal speed fluctuation attribute mostly, while the vertical speed fluctuation does in high levels.