• Title/Summary/Keyword: Eddy loss

Search Result 246, Processing Time 0.03 seconds

Electromagnetic Wave Shield Characteristics of Thermal Sprayed Ferrite Coatings (자성 페라이트 용사피막의 전자파 차폐 특성)

  • 정태식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • In these days, many advanced nations have enforced import restrictions against things emitting electromagnetic wave which has report that it is so harmful. In general, electromagnetic wave is composed of electric wave and magnetic wave. The reflection of electromagnetic wave is mainly reflected by conductive materials and the magnetism loss is generated by magnetic ferrite. The magnetism loss of ferrite is separated by eddy current loss, residual magnetism loss and hysteresis loss. Thermal sprayed coating is intended to manufacture because of simple processes and high efficient electromagnetic wave shielding. The high efficient thermal sprayed coatings were made from the magnetic ferrite materials that characterizes absorption of electromagnetic wave, and the electric conductive materials that characterize emitting of electromagnetic wave. This study was manufactured thermal sprayed coatings to improve absorption-efficiency, and measured the electromagnetic wave shielding efficiency. As the experimental results, high electromagnetic wave shield efficiency was obtained at wave frequency 2GHz to thermal sprayed ferrite coatings manufactured by size distribution range of spray powders, $38~88\mu\textrm{m}$.

Thickness Evaluation of the Aluminum Using Pulsed Eddy Current (펄스 와전류를 이용한 알루미늄 두께 평가)

  • Lee, Jeong-Ki;Suh, Dong-Man;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2005
  • Conventional eddy current testing has been used for the detection of the defect-like fatigue crack in the conductive materials, such as aluminum, which uses a sinusoidal signal with very narrow frequency bandwidth, Whereas, the pulsed eddy current method uses a pulse signal with a broad bandwidth. This can allow multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, a pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was composed of the pulse generator generating the maximum square pulse voltage of 40V, an amplifier controlled up to 52dB, an A/D converter of 16 bit and the sampling frequency of 20 MHz, and an industrial personal computer operated by the Windows program. A pulsed eddy current probe was designed as a pancake type in which the sensing roil was located inside the driving roil. The output signals of the sensing roil increased rapidly wich the step pulse driving voltage かn off, and the latter part of the sensing coil output voltage decreased exponentially with time. The decrement value of the output signals increased as the thickness of the aluminum test piece increased.

Analysis on Rotor Losses in High-Speed Motor/Generator with 3-Phase Rectifier (3상 브릿지 정류기를 갖는 초고속 전동발전기의 회전자 손실 해석)

  • Jang Seok-Myeong;Cho Han-Wook;Jeong Yeon-Ho;Yang Hyun-Sup
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.761-763
    • /
    • 2004
  • Due to the high peripheral speed of the rotor and the relatively high conductivity of the magnets used, rotor eddy current loss can be substantial. On the basis of the coupled FEM and analytical method, this paper deals with the rotor loss analysis in permanent magnet high-speed machine with 3-phase rectifier.

  • PDF

The Model Development of Coupled Thermo-Electromagnetic Analysis in Three-phase Induction Motors by using Heat loss Mapping Method (3상 유도 전동기에서의 열손실 사상법을 이용한 열전달-전자기장 연계 수치 해석 모델 개발)

  • Kim, Dong-Hee;Kim, Chi-Won;Jung, Hye-Mi;Lee, Ju;Um, Suk-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.788-789
    • /
    • 2011
  • A comprehensive thermo-electromagnetic model has been developed to estimate temperature and electromagnetic distribution in an three-phase induction motor under steady state operation. Electromagnetic modeling enables us to predict thermal dissipation rates by eddy-current loss and copper loss in induction motors. Non-uniform temperature distributions are investigated to account for the strong effect of local temperature build-up on the motor performance and expected life-span. For more accurate thermal modeling purpose, Heat loss mapping method, which is matched up with electromagnetic losses and volumetric heat source, is developed and performed analysis. Heat loss mapping method can be greatly used as a design or diagnostic tool for three-phase induction motors with complex structural electromagnetic fields.

  • PDF

A study on Loss Evaluation Technology of High Efficiency Mold Transformers using Electromagnetic Field Simulation (전자계해석을 이용한 고효율 몰드변압기 손실 평가기술 연구)

  • Chung, Sang Hoon;Lee, Kon;Choi, Myung Jun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.774-775
    • /
    • 2015
  • In this paper, a series of electromagnetic analyses carried out for a high efficiency 22.9/0.38kV mold transformer are presented. The simulations were performed in order to calculate the losses which eventually verify the performance(efficiency) of the designed product. Here, losses include core loss, stray losses of non-current carrying metallic structural parts(core plate and clamp), ohmic loss and eddy current loss of current carrying metallic parts(busbars, leads, terminals and windings). The obtained results of the simulations were compared to the test results and showed high level of accuracy. The loss evaluation technology will allow designers avoid any potential over-design or under-design of the high efficiency products, reducing the manufacture cost and development period compared to the conventional experience-based design procedures.

  • PDF

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)

Effect of CaO and $SiO_2$ Addition on the Electromagnetic Properties of Mn-Zn Ferrites ($SiO_2$와 CaO 첨가가 Mn-Zn Ferrites의 전자기적 물성에 미치는 영향)

  • 서정주;신명승;한영호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.1033-1039
    • /
    • 1995
  • The current experiment has quantitatively investigated the effect of the content of CaO and SiO2 on the microstructure, density, electrical resistivity, power loss and initial permeability of manganese zinc ferrites. The density increased initially with CaO and SiO2 content and the further addition showed an adverse effect. The excess addition of CaO and SiO2 developed a discontinuous grain growth with numerous pores inside grains and lowered the electrical resistivity. The initial permeability decreased with increasing the content of SiO2. The samples with relatively low power loss showed that half of the total loss at 10$0^{\circ}C$, 100 kHz and 2000 Gauss was due to the eddy current loss.

  • PDF

A Study on the Effect of the Magnetization Direction on the Iron Loss Characteristics in Brushless DC Motors

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • This paper introduces two types of magnetization, and reports the effect of the magnetization direction on the iron loss in a brushless DC (BLDC) motor using a 2-D time-stepped voltage source finite-element method (FEM). The iron losses were found to consist of hysteresis and eddy current loss, which were calculated from the time variation of the magnetic field distribution. To confirm the analysis, a prototype BLDC motor was constructed with a sintered ferrite magnet. The analysis and experimental results suggest that the magnetization direction has a significant effect in terms of the iron loss characteristics of the BLDC motor.

Parameter Measurement and Dynamic Performance Estimation of Synchronous Reluctance Motor Considering Iron Loss (철손을 고려한 자기저항 동기전동기의 정수 측정 및 동특성 예측)

  • Lee, J.S.;Hong, J.P.;Hahn, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.58-60
    • /
    • 1999
  • This paper presents dynamic performance prediction using Matlab / simulink after parameter estimation of synchronous reluctance motor considering iron loss. Test motor is 3 phase SynRM with the segmental rotor, rating power is 0.175KW. Experiment equipment is consists of testing motor, dynamometer, vector invertor dynamocontroller, and power analyser. The stator iron loss and rotor iron loss are modelled by additional windings on three-phase winding axis. These windings are transformed into d-q axis, and are represented as equivalent eddy current windings. P-Q circle diagram method and single phase standstill method are used to measure motor parameters considering iron loss.

  • PDF

Strategic Utilization of Soft Magnetic Composite in a High-Speed Switched Reluctance Machine Depending on a Loss Pattern (손실 패턴에 따른 고속 스위치드 릴럭턴스 전동기의 SMC 분말을 이용한 효율 개선)

  • Lee, Cheewoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.323-327
    • /
    • 2017
  • Soft magnetic composite (SMC) material has recently received a significant attention in the area of high-speed machines because of its unique properties such as good design flexibility and low eddy current loss. However, SMC's electromagnetic property is poor compared to silicon steel in terms of saturation, relative permeability, and hysteresis loss. This paper presents a technique for utilization of SMC in two strategic designs of a switched reluctance machine (SRM) depending on a loss pattern. To investigate the effect of SMC's merits and demerits, the stator material is changed from laminated steel to SMC.