• Title/Summary/Keyword: Eddy Current Sensor

Search Result 149, Processing Time 0.031 seconds

A Study of Properties Eddy Current Sensor for 22.9kv Distribution Insulation Cable (22.9kV 배전선로 절연전선 검출용 와류탐상 센서 특성 연구)

  • Oh, Yong-Cheul;Kim, Tag-Yong;Lee, Kyeong-Seob;Jeong, Han-Seok;Yoo, Jae-Sik;Yang, Jung-Kwon;Lee, Jae-Bong;Lee, Keon-Hang;Kim, Chong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2140_2141
    • /
    • 2009
  • We used the eddy current sensor for a 22.9kV distribution power line insulation cable diagnosis. The insulation cable which is used in the 22.9kV distribution power line is having element wire from 6 to 18. Consequently, currently to ECT applications it has a limit in the distribution power line. We about under producing to apply in pick-up coil forms and the differential total coil form where becomes sum of zero in order to have. From measurement result, partial broken cable was confirmed 500 mV~980 mV changes from normal state.

  • PDF

Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner (코너부의 펜슬가공시 볼엔드밀의 공구변형 특성)

  • Wang, Duck-Hyun;Yun, Kyung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method (적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어)

  • 노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

A study on the optimal conditions for machining accuracy when endmill fillet cutting at the corner (코너부 모깍기 엔드밀가공시 가공정밀도의 최적조건에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae-Gyu;Park, In-Su;Wang, Duck-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.101-108
    • /
    • 2016
  • Endmill fillet cutting at the corner was conducted with the online measurement of cutting forces and tool deflection by a tool dynamometer and an eddy current sensor system. The profile of the machined surface was also compared with the CAD profile with a Coordinate Measuring Machine (CMM) and CALYPSO software. It was found that the end mill cutter with four blades has a better surface profile than that with two blades, and the cutting forces and tool deformation were increased as the cutting speed was increased. When the tool located at the degree $45^{\circ}$ corner was found to conduct the maximum cutting force than started to the point of the workpiece. As it was compared with the CMM and ANOVA analysis result in the case that the cutting force and tool deformation was the maximum, it was found that the result was affected by the spindle speed and the number of blades.

Study on Upward Machining of Inclined Surface by Ball-End Milling (볼 엔드밀에 의한 경사면 상방향 절삭가공에 관한 연구)

  • Jeong, Jin-Woo;Bae, Eun-Jin;Kim, Sang Hyun;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.87-93
    • /
    • 2021
  • The mold industry is competitive, and mold should be processed under optimal conditions for efficient processing. However, the cutting conditions of the ball-end mill, which are a major factor in mold processing, are mostly set empirically, and considerable research is required for increasing the tool life and processing accuracy. In this study, a tool dynamometer and an eddy current sensor were used along with NI-DAQ, a data acquisition device, to obtain characteristic values of the cutting force and tool deformation during the ball end-mill machining of inclined surfaces at a machining center. The cutting force and tool deformation were measured in an experiment. It was found that the tool received the greatest cutting force at the end of the machining process, and the deformation of the tool increased rapidly. Furthermore, the cutting force tended to increase with the angle and number of rotations. The deformation increased rapidly during the machining of a 45° inclined surface.

Cutting Force Characteristics and Tool Deflection When Machining Rectangular Shapes with a Ball End Mill (볼엔드밀 공구에 의한 사각형상 가공시 공구 휨에 따른 절삭력 특성)

  • Kim, In Soo;Kim, Sang Hyun;Lee, Dong Sup;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.26-32
    • /
    • 2019
  • Ball end mills used for high-speed and high-precision machining require longer machining time than flat end mills or face cutters, since the tool diameter is limited and the rigidity is reduced by the characteristics of the tool's cutting edge: at the top end of the tool, the cutting speed approaches zero and hardly removes any material. Because there is little material removal at the top end of the ball end mill, the outer cutting edge performs the majority of the work; this irregular cutting force deforms the tool and shortens its life. In this study, we attached an eddy-current sensor to a tool to measure the deformation from the cutting force and we used a tool dynamometer to measure the cutting force. We found that the change in cutting force is dependent on the change in feed rate during square-shaped processing and, as the feed rate is accelerated, the cutting force also increases. Higher cutting forces increase tool deformation.

An Inductive Position Sensor for Self-sensing Magnetic Suspension System (셀프센싱 자기 부상계를 위한 인덕턴스형 변위센서)

  • 윤형진;이상헌;백윤수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1038-1041
    • /
    • 2003
  • The magnetic suspension system is used in many areas, because it has great advantages. such as no friction, no noise, no lubrication and so on, but it is a unstable system in natural. It must have a feedback control with the position is measured for a stable levitation. There are an eddy-current sensor, a capacitive sensor, an inductive sensor, and an optical sensor with a laser as the sensor which measures displacements without contact. Among them, an inductive sensor is made with lower price than others. And it has a good linearity. In this paper, a magnetic circuit leads a linear equation between an input as a displacement and an output as a voltage. Experiments establish that voltage change according to displacement is linear. This paper presents the preliminary study of an inductive position sensing for self-sensing magnetic suspension system.

  • PDF

The Organization of Rotational Accuracy Measurement System of NC Lathe Spindle (NC 선반 주축의 회전정도 측정 시스템의 구성)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • It is important to measure the rotational accuracy of NC lathe spindle as it affects to the qualities of all machines machined by the NC lathe using in industries. The bad rotational accuracy of NC lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of NC lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental appratus for measuring of rotational accuracy by using eddy current type gap sensors, converters, screw terminal, data acquisition board inserted in computer and software f3r data acquisition, DT VEE ver. 5.0 and then error data acquired in the rotational accuracy test of NC lathe spindle are analysed in plots and statistical treatments.

Real-time wafer thin-film thickness measurement system implementation with eddy current sensors. (와전류센서를 이용한 실시간 웨이퍼 박막두께측정 시스템 구현)

  • Kim, Nam-woo;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.383-385
    • /
    • 2013
  • 반도체소자의 고속실현을 위해서 알루미늄배선에서 40% 가량 성능을 높이는 반면 제조비용은 30%까지 낮출 수 있는 구리를 선호하고 있으나, 식각이 잘 되지 않아 원하는 패턴으로 만들어 내기가 곤란한 공정기술의 어려움과 구리물질이 지닌 유독성문제를 가지고 있다. 기존의 식각기술로는 구리패턴을 얻을 수 없는 기술적 한계 때문에 화학.기계적 연마(CMP)를 이용한 평탄화와 연마를 통해서 구리배선을 얻는 다마스커스(Damascene)기술이 개발됐고 이를 이용한 구리배선기술이 현실적으로 가능하게 됐다. CMP를 이용한 평탄화 및 연마 공정에서 Wafer에 도포된 구리의 두께를 실시간으로 측정하여 정밀하게 제어할필요가 있는데, 본 논문에서는 와전류를 이용하여 옹고스트롬 단위의 두께를 실시간으로 측정하여 제어 하는 시스템구현에 대해 기술한다.

  • PDF

Measuring of Rotational Accuracy of Lathe Spindle (선반 주축의 회전운동 정도 측정)

  • Kim, Young-Seuk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.43-48
    • /
    • 2007
  • It is important to measure the rotational accuracy of lathe spindle as it affects to the qualities of all machines machined by the lathe using in industries. The bad rotational accuracy of lathe spindle are caused mainly by wearness of the spindle in using and quality of spindle when machining and using low level bearings. It occurs especially in case of lathes because the cutting force acting to work-piece act on one side to the spindle not to both sides symmetrically. Therefore in this study, constructing experimental apparatus for measuring of rotational accuracy by using eddy current type gap sensors AEC5706PS and sensors, s-06LN, data acquisition board DT9834(USB type) and software for data acquisition, DT Measure Foundry ver. 4.0.7 etc., error data acquired in the rotational accuracy test of lathe spindle are analysed in plots and statistical treatments.