• Title/Summary/Keyword: Eddy Current Brake

Search Result 67, Processing Time 0.035 seconds

Analysis and Case Study of Permanent Magnet Arrays for Eddy Current Brake Systems with a New Performance Index

  • Sainjargal, Surenkhorloo;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • In this paper, magnetic flux distributions of several permanent magnet arrays, including Halbach array, are analyzed and compared. Also, braking force characteristics on a moving solid conductor in the eddy current brake systems with such magnet arrays are analyzed. Then, a new performance index taking into account the maximum braking force and the volume of the magnet is introduced for the comparison and case study of permanent magnet arrays. By changing the lengths, magnetization directions and the height of the permanent magnet arrays, a higher braking force per volume of the magnet can be achieved.

Characteristic Analysis And Comparison Of The Linear Eddy-Current brake systems (직선형 와전류 제동기의 특성 해석 및 비교)

  • Jang, S.M.;Kwon, J.K.;Lee, S.H.;Cha, J.W.;Kim, B.S.;Cho, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.125-127
    • /
    • 2003
  • Brake forces due to eddy-currents induced by the relative motion of a conductor and a magnetic devices: motors, brakes and magnetically levitated vehicles. In particular, the practicality of using permanent magnet in eddy-current brakes system is obviously recent, due to the manifold improvement in magnet materials and technology. For such a system we give analytical formulas considering eddy-current distribution as variables: flux density for each region and forces.

  • PDF

A Study on the Performances of Hybrid type Electric Brake System (하이브리드형 전기식 제동장치의 성능에 대한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lim, Chul-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1492-1498
    • /
    • 2003
  • This study proposes a new conceptual Hybrid Electric Brake System (HEBS) which overcomes problems of a conventional hydraulic brake system. HEBS adopt a contactless type bake system when a vehicle speed is high, to obtain superior braking performances by eddy current. On the contrary, when a vehicle speed is low, HEBS employs a contact type brake system such as conventional hydraulic brake system to generate higher brake force. Therefore, HEBS transfers faster the braking intention of drivers and guarantees the safety of drivers. Braking torque analysis is performed by using a mathematical model which is proposed to investigate the characteristic of a vehicle dynamics when the brake torque is applied. Optimal torque control is achieved by maintaining a desired slip corresponding to the road condition. The results show that HEBS reduces the stopping distance, saves the electric energy, and increases the stability.

Linearity study for the field coil current and the load of eddy current dynamometer (Eddy current 동력계의 부하와 와전류의 직진성 관련 연구)

  • 문병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.66-72
    • /
    • 2000
  • Commercial eddy current dynamometers control the torque of ratating body (poer supply machine) with the field coil current being operated as a braking force. In this paper, we studied about the relation between the field coil current and the torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer, it is linear relation between the brake force measured from the torque meter (e.g. load cell, strain gage or spring balance etc.) which is installed at the case of dynamometer and the multiply of shaft rpm by the square of field coil current (N$\times$Ia2). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measures the torque of rotating body without special torque measuring devices.

  • PDF

Evaluation of Static Strength and Fatigue Strength for Bogie of a Korea High Speed Train Including Eddy Current Brake System (와전류 제동장치를 포함한 한국형 고속전철 대차의 정적강도 및 피로강도 평가)

  • 노규석;이상록;강재윤
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.267-272
    • /
    • 2001
  • A FEM-based analytical approach was used to evaluate the static strength and the fatigue strength of a KHST bogie including eddy current brake system. Calculation was carried out in the fields of linearity and small deformation. The yield strengths were used as criteria for evaluating the static strength and the fatigue limits were used as criteria for evaluating the fatigue strength. The analysis results show that there is not any location that exceeds the allowable criteria.

  • PDF

A Study On the Design and Constant Torque Control of the Eddy Current Brake For a High-speed Railway Train (고속전철용 와전류제동장치의 설계 및 정토크 제어에 관한 연구)

  • Ryu, Hong-Je;Gang, Gyeong-Ho;U, Myeong-Ho;Kim, Jong-Su;Gang, Do-Hyeon;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.611-616
    • /
    • 1999
  • The introduction of the eddy current braking(ECB) system in HSRT(high speed railway train) is known to be advantageous, in that the system is independent on wheel-rail adhesion coefficient which is greatly affected by weather condition. It also minimize the maintenance of the brake system and does not require any additional electric energy because it is powered form the regenerated power at the time of the braking. In this study, the braking and attraction forces of the ECB are simulated by 2-D FEM and are experimentally verified on a down-scaled prototype. A control algorithm of the ECB is proposed to generate constant braking torque using linear variation of the reference current according to speed. Experimental results shows that the constant torque is generated over all operating speed region by developed control algorithm.

  • PDF

Measurement of Mechanical Braking Force for KHST (한국형 고속전철의 기계 제동력 측정 방법)

  • Kim Seogwon;Kim Youngguk;Park Chankyoung
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.580-585
    • /
    • 2003
  • Korean high speed train (KHST) has adopted a combined electric/ mechanic (friction) braking system. Electric brakes are consist of rheostatic brake, regenerative brake and eddy current brake and mechanical brakes are composed of disc brake, wheel disc brake and tread brake. In this paper, we introduce the braking performance test and the measuring method of mechanical brake. And disc brake performance has been reviewed by the experimental method. The on-line test of KHST has been carried out up to 260 km/h and proved that the disc braking capacity of KHST is sufficient.

  • PDF

Torque Analysis of Axial Flux PM Type Eddy Current Brake (영구자석형 와전류제동기의 토크 특성 해석)

  • Shin, Hyeon-Jae;Choi, Jang-Young;Cho, Han-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1019-1020
    • /
    • 2011
  • This paper deals with torque analysis of axial flux permanent magnet (AFPM) type eddy current brake (ECB) based on analytical field computation. On the basis of a magnetic vector potential and a two-dimensional (2-D) polar coordinate system, analytical solutions for normal and tangential flux density due to permanent magnet (PM) considering eddy current effect are obtained. And then, using derived analytical field solutions, braking torque and normal force characteristics according to rotor speed are also predicted. A three-dimensional (3-D) finite element (FE) analysis is employed to confirm the validity of analyses.

  • PDF

A Study on Eddy Current Brake For a High-speed Railway Train (고속전철용 와전류제동장치 구동에 관한 연구)

  • Ryoo, Hong-Je;Woo, Myung-Ho;Kim, Jong-Soo;Kang, Kyung-Ho;Kang, Do-Hyun;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2745-2747
    • /
    • 1999
  • Recently, the eddy current braking system has an advantage as the high speed railway train is developed. Because it is independent on wheel-rail coefficient of adhesion and it can be used in adverse weather conditions by reason of non-acting on wheels. In this paper we designed down-scaled eddy current brake model and developed control algorithm to generate constant braking torque. Our algorithm is verified through experiments to generate constant torque.

  • PDF

The eddy current braking torque on moving rotor considering magnetic path (자기 경로를 고려한 와전류 제동기의 회전자 발생 토크 특성)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Lee, Dal-Eun;Han, Kyoung-Hee;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.109-111
    • /
    • 2002
  • It requires to study on accurate control skill for the technical improvement of servo system require. It needs to study on brake that has constant-torque speed range as load. In this paper, braking torque of eddy current brake between electromagnet stator and rotating disk are analyzed. The torque-speed characteristics and proper disk construction are presented in here. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of stator, these are confirmed by experimental results.

  • PDF