• Title/Summary/Keyword: Eddy Current

Search Result 1,085, Processing Time 0.023 seconds

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.

Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks' VIV stability

  • Li, Ke;Qian, Guowei;Ge, Yaojun;Zhao, Lin;Di, Jin
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • Vortex-Induced-Vibration (VIV) is one kind of the wind-induced vibrations, which may occur in the construction and operation period of bridges. This phenomenon can bring negative effects to the traffic safety or can cause bridge fatigue damage and should be eliminated or controlled within safe amplitudes.In the current VIV studies, one available mitigation countermeasure, the horizontal flow-isolating plate, shows satisfactory performance particularly in PI shaped bridge deck type. Details of the wind tunnel test are firstly presented to give an overall description of this appendage and its control effect. Then, the computational-fluid-dynamics(CFD) method is introduced to investigate the control mechanism, using two-dimensional Large-Eddy-Simulation to reproduce the VIV process. The Reynolds number of the cases involved in this paper ranges from $1{\times}10^5$ to $3{\times}10^5$, using the width of bridge deck as reference length. A field-filter technique and detailed analysis on wall pressure are used to give an intuitive demonstration of the changes brought by the horizontal flow-isolating plate. Results show that this aerodynamic appendage is equally effective in suppressing vertical and torsional VIV, indicating inspiring application prospect in similar PI shaped bridge decks.

Effects of Magnetic Powder Size on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 입도의 영향)

  • Noh, Tae-Hwan;Kim, Ju-Beom
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.1
    • /
    • pp.44-51
    • /
    • 2008
  • The effects of magnetic powder size on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr(wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including small magnetic flakes with the size less than $26{\mu}m$ exhibited high power loss in the GHz frequency range as compared with the sheets having large alloy flakes of $45{\sim}75{\mu}m$. Moreover, both the complex permeability and the loss factor increased with the decrease in size of the alloy flakes. The large power loss of the sheets containing small magnetic flakes was attributed to the high complex permeability, especially their imaginary part. The high complex permeability of the sheets composed of small flakes was considered to be due to the highly thin shape of the flakes inducing low eddy-current loss.

Development of Hybrid Insulating Coating for Fe-based Soft Magnetic Powder (철계 연자성 분말용 하이브리드 절연 코팅막 개발)

  • Kim, Jungjoon;Kim, Sungyeom;Kim, Youngkyun;Jang, Taesuk;Kim, Hwi-jun;Kim, Youngjin;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.233-238
    • /
    • 2021
  • Iron-based amorphous powder attracts increasing attention because of its excellent soft magnetic properties and low iron loss at high frequencies. The development of an insulating layer on the surface of the amorphous soft magnetic powder is important for minimizing the eddy current loss and enhancing the energy efficiency of high-frequency devices by further increasing the electrical resistivity of the cores. In this study, a hybrid insulating coating layer is investigated to compensate for the limitations of monolithic organic or inorganic coating layers. Fe2O3 nanoparticles are added to the flexible silicon-based epoxy layer to prevent magnetic dilution; in addition TiO2 nanoparticles are added to enhance the mechanical durability of the coating layer. In the hybrid coating layer with optimal composition, the decrease in magnetic permeability and saturation magnetization is suppressed.

Damage detection of composite materials via IR thermography and electrical resistance measurement: A review

  • Park, Kundo;Lee, Junhyeong;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.563-583
    • /
    • 2021
  • Composite materials, composed of multiple constituent materials with dissimilar properties, are actively adopted in a wide range of industrial sectors due to their remarkable strength-to-weight and stiffness-to-weight ratio. Nevertheless, the failure mechanism of composite materials is highly complicated due to their sophisticated microstructure, making it much harder to predict their residual material lives in real life applications. A promising solution for this safety issue is structural damage detection. In the present paper, damage detection of composite material via electrical resistance-based technique and infrared thermography is reviewed. The operating principles of the two damage detection methodologies are introduced, and some research advances of each techniques are covered. The advancement of IR thermography-based non-destructive technique (NDT) including optical thermography, laser thermography and eddy current thermography will be reported, as well as the electrical impedance tomography (EIT) which is a technology increasingly drawing attentions in the field of electrical resistance-based damage detection. A brief comparison of the two methodologies based on each of their strengths and limitations is carried out, and a recent research update regarding the coupling of the two techniques for improved damage detection in composite materials will be discussed.

Improved Metal Object Detection Circuits for Wireless Charging System of Electric Vehicles

  • Sunhee Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2209-2221
    • /
    • 2023
  • As the supply of electric vehicles increases, research on wireless charging methods for convenience has been increasing. Because the electric vehicle wireless transmission device is installed on the ground and the electric vehicle battery is installed on the floor of the vehicle, the transmission and reception antennas are approximately 15-30 cm away, and thus strong magnetic fields are exposed during wireless charging. When a metallic foreign object is placed in the magnetic field area, an eddy current is induced to the metallic foreign object, and heat is generated, creating danger of fire and burns. Therefore, this study proposes a method to detect metallic foreign objects in the magnetic field area of a wireless electric vehicle charging system. An active detection-only coil array was used, and an LC resonance circuit was constructed for the frequency of the supply power signal. When a metallic foreign object is inserted into the charging zone, the characteristics of the resonance circuit are broken, and the magnitude and phase of the voltage signal at both ends of the capacitor are changed. It was confirmed that the proposed method has about 1.5 times more change than the method of comparing the voltage magnitude at one node.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Technical Note : Development of Electric Riding Machine for Cycle Fitting (단신 : 사이클 피팅을 위한 전동 승차 조절기 개발)

  • Bae, Jae-Hyuk;Choi, Jin-Seung;Kang, Dong-Won;Seo, Jeong-Woo;Tack, Gye-Rae
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.3
    • /
    • pp.373-378
    • /
    • 2012
  • The purpose of this study was to develop an electric riding machine for cycle fitting to control riding posture easily, to measure frame size quantitatively, and to overcome disadvantages of the traditional systems. The electric riding machine consisted of actuator, load controller, and display & control unit. The actuator unit by BLDC(BrushLess Direct Current) motor drives the saddle height up and down, the crank forward and backward, the handlebar up and down, and the handlebar forward and backward. The load controller unit controls loads by Eddy current controller with electromagnet and aluminum circular plate. The display & control unit consisted of frame size controller and display panel which shows top tube length(485~663mm), head tube length(85~243mm), seat tube length(481~671mm), and seat tube angle($62.7{\sim}76.4^{\circ}$). The range of frame size control for developed electric riding machine did not have difference compared to traditional commercial systems, but quantitative and precise control with 0.1 mm length and $0.1^{\circ}$ angle was possible through digital measurement. Unlike traditional commercial systems, frame size control was possible during riding through motor driven method, thus fitting duration decreased. It is necessary for further improvement to have feedback from users. It is believed that developed electric riding machine can help to develop domestic fitting system.

Sea Level Variabilities in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1190-1194
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON(T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/]P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and 52. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific(NP) was higher than Yellow Sea(YS) and East Sea(ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

The Surface fCO2 Distribution of the Western North Pacific in Summer 2002 (2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성)

  • Choi, Sang-Hwa;Kim, Dong-Seon;Shim, Jeong-Hee;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.