• Title/Summary/Keyword: Ectomycorrhizas

Search Result 9, Processing Time 0.03 seconds

Spatiotemporal change in ectomycorrhizal structure between Tricholoma matsutake and Pinus densiflora symbiosis (송이와 소나무간의 공생관계(共生關係)에서 외생균근(外生菌根)의 시(時)-공간적(空間的) 구조변화(構造變化))

  • Koo, Chang-Duck;Kim, Je-Su;Park, Jae-In;Ka, Kang-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.389-396
    • /
    • 2000
  • To determine whether the Tricholoma matsutake (pine mushroom, Songyi) is symbiotic or parasitic to Pinus densiflora, structural change in their natural ectomycorrhizas were examined. The mycorrhizal samples were collected at three progressional points in the natural hypogeous colony(shiro) : colony front edge, near the fruiting point and 20cm back. The fine roots in the colonies were typical ectomycorrhizas with fungal mantle and Hartig net. However, the T. matsutake mycorrhizas had unique characteristics compared to other types of ectomycorrhizas. That is, spatially the fungal mantle and Hartig net of the T. matsutake mycorrhizas continued to develop along the growing tip, while temporally those structures declined to shrink changing to black brown in the older part of the roots behind the actively growing tip portion. However, there was no mark that the fungal hyphae penetrated into either the cortical cells, endodermal cell layers or stele. The apical tips of the blackened roots remained alive to form new mycorrhizas with other fungi later. Therefore, we conclude that the mycorrhiza of T. matsutake+P. densiflora is rather a dynamic symbiosis that changes its position spatiotemporally as the root grows than either a simple parasitism or symbiosis.

  • PDF

Effect of Water Stress on Ectomycorrhizal Development and Growth of Alnus rubra Seedlings (수분 스트레스가 루브라오리나무 묘목의 균근발달과 생장에 미치는 영향)

  • Koo, Chang-Duck;Molina, Randy;Miller, Steven L.;Trappe, James M.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.302-309
    • /
    • 2001
  • The effects of water stress on the development of Alpova dipiophloeus ectomycorrhizas and on the growth of nodulated Alnus rubra Bong seedlings were investigated. Five-day cyclic water stress significantly decreased the ectomycorrhizal development and the seedling growth. However, A. diplophloeus inoculated seedlings did not significantly differ from the non-inoculated seedlings in the growth and physiological activities under both well watered and water stressed conditions. $N_2$-fixation was less sensitive than $CO_2$ fixation to water stress. We conclude that under water stress conditions A. diplophloeus mycorrhizas do not contribute to the fitness of red alder seedlings.

  • PDF

Temporal Distribution of Ectomycorrhizal Fungi and Pollen as a Seasonal Nutrient Source in a Boreal Forest, Canada

  • Lee, Eun-Ju
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.169-173
    • /
    • 2000
  • Seasonal distribution of ectomycorrhizal associations in various types of forest in a boreal forest in Manitoba. Canada was investigated. Alsohe relationship between ectomycorrhizal growth and pine pollen nutrients was examined. In four different forest stands, ectomycorrhizas tended to be lower in the spring than in the summer and fall samples. In addition. a mature jack pine (Pinus banksiana) stand showed higher mycorrhizal activities than a young jack pine stand. Growth of Suillus brevipes hyphae wa ts stimulated by additions of pollen representing mean pollen deposition in Mistik Creek study area after 30 and 70 days of growth with dextrose availability. This result suggests that the peak ectomycorrhizal activity is followed by pollen deposition in the study region and therefore, addition of pine and spruce pollen in early or middle of June in the boreal forest can be an important seasonal nutrient source for ectomycorrhizal growth.

  • PDF

Ectomycorrhizal Fungal Communities of Red Pine (Pinus densiflora) Seedlings in Disturbed Sites and Undisturbed Old Forest Sites

  • Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.77-81
    • /
    • 2013
  • This study aimed to investigate differences in ectomycorrhizal (ECM) fungal communities between disturbed sites and undisturbed old forest sites. ECM root tips of Pinus densiflora were collected from 4 sites disturbed by human activities and 3 undisturbed old forest sites adjacent to the disturbed sites. Results in this study showed that the number of ECM root tips, species diversity, and number of species were significantly higher in the disturbed sites than in the undisturbed sites, suggesting that the ECM fungal community structure was affected by the degree of disturbance.

Morphological Characteristics of Tricholoma matsutake Ectomycorrhiza (송이 외생균근(外生菌根)의 형태적(形態的) 특징(特徵))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.16-20
    • /
    • 2005
  • Tricholoma matsutake ectomycorrhizas are unique in their morphology: not bifurcated broom shaped roots with not easily wettable brilliant and profuse white hyphae. To understand these characteristics the ectomycorrhizas were investigated with electron microscopy. T. matsutake ectomycorrhiza have thin mantle and typical Hartig net development in the epidermis and cortex, but no fungal mantle on the root apex. There were no penetrating hyphae inside of the cells of either epidermis, cortex or stele. Inside of the walls of epidermis and cortex cells are lined with ca. $2{\mu}m$ hemispherical amyloplasts. The brilliant hyphal surface was covered with various fine amorphous granules. The hyphal cell wall was thin membrane less than $0.3{\mu}m$ thick. There is no clamp connection on the hyphae. This thin membraneous cell wall with high elasticity can be related to survival strategy of the species without plasmolysis under frequent soil water stress environment. And the coarse hyphal surface with some water repellency can control sudden inrush of water of the hyphae with an extremely low osmotic potential. It is concluded that no mantle on the tip can induce mycorrhizas not bifurcated and that finely coarse surface of T. matsutake hyphae can make the hyphae brilliantly white but less wetted.

Cultural Characteristics of Korean Ectomycorrhizal Fungi (한국산 외생균근균의 배양 특성)

  • Jeon, Sung-Min;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.43 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Many ectomycorrhizal fungi provide delicious foods for humans as symbiotic fungi forming ectomycorrhizas on roots of trees. Korea Forest Research Institute (KFRI) is focused on studying the pure culture, conservation, and fundamental characteristics of ectomycorrhizal fungi as well as their artificial cultivation. In this review, we described the cultural characteristics of many ectomycorrhizal fungi that are preserved in the cold room of KFRI. The aim of this article is to provide basic information that will be useful in investigating good forest resources for any researchers who are interested in this topic.

Ectomycorrhizal Effect on Physiological Activities of Water-Stressed Nodulated Alnus rubra Seedlings (외생균근(外生菌根)이 수분결핍(水分缺乏)된 루브라 오리나무 묘목(苗木)의 생리활동(生理活動)에 미치는 영향(影響))

  • Koo, Chang-Duck;Molina, Randy;Miller, Steven L.
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.4
    • /
    • pp.513-521
    • /
    • 2000
  • Red alder (Alnus rubra Bong.) seedlings inoculated with Frankia pure cultures were grown in a walk-in growth chamber for sixteen weeks. Half were inoculated with the spores of the ectomycorrhizal fungus Alpova diplophloeus (Zeller & Dodge) Trappe & Smith. The mycorrhizal seedlings were significantly larger than nonmycorrhizal plants in diameter, and nodule and shoot dry weight by 6 to 16% when their heights were very similar. The mycorrhizal effects on water relations of red alder seedlings were explored in a 30 hours water stress. Mycorrhizal and nonmycorrhizal seedlings did not significantly differ in leaf water potentials, $CO_2$ exchange rates or $N_2$-fixation rates during the drought. Our results suggests that A. diplophloeus mycorrhizas increased red alder seedling growth under well-watered conditions but do not affect water relations of the plant under water-stress.

  • PDF

Effects of Lyophyllum shimeji Inoculation on the Mycorrhizal Formation and Seedling Growth of Lespedeza cyrtobortya (땅찌만가닥버섯균(菌)의 접종(接種)이 참싸리 묘목(苗木)의 균근형성(菌根形成)과 생장(生長)에 미치는 영향(影響))

  • Lee, Sang Yong;Jung, Joo Hae;Lee, Jong Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.3 s.160
    • /
    • pp.146-152
    • /
    • 2005
  • For the application of ectomycorrhizal seedlings on damaged slope lands, studies on cultural characteristics of Lyophyllum shimeji and ectomycorrhizal associations of Lespedeza cyrtobotrya seedlings were carried out by artificial inoculation of L. shimeji. Mycelial growth of L. shimeji was best on MP (1% malt extract, 0.1% peptone, 1% glucose and 1.5% agar) medium. An optimum temperature and pH for the mycelial growth were $25^{\circ}C$ and pH6, respectively. Mycorrhizal root of L. cyrtobotrya seedlings inoculated with L. shimeji showed characteristics of ectomycorrhizas with Hartig net. Growth rate of the mycorrhizal seedlings's roots was higher than that of non-mycorrhizal seedlings. When the mycorrhizal seedlings were transplanted in slope land, survival rate and dry weight were 62% and 850 mg/seedling, respectively. On the other hand, survival rate and dry weight of non-mycorrhizal seedlings were 11% and 430 mg/seedling, respectively.

Soil Water Monitoring in Below-Ground Ectomycorrhizal Colony of Tricholoma Matsutake

  • Koo, Chang-Duck;Kim, Je-Su;Lee, Sang-Hee;Park, Jae-In;Kwang- Tae Ahn
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • Water is critically important for Tricholoma matsutake(Tm) growth because it is the major component of the mushroom by over 90%. The mushroom absorbs water through the below ground hyphal colony. Therefore, the objectives of our study were to investigate spatio-temporal water changes in Tm colonies. This study was carried out at Tm fruiting sites in Sogni Mt National Park, where the below-ground mushroom colonies have been irrigated. To identify spatial water status within the Tm soil colony soil moisture and ergosterol content were measured at six positions including a mushroom fruiting position on the line of the colony radius. To investigate temporal soil moisture changes in the soil colony, Time Domain Reflectometry(TDR) sensors were established at the non-colony and colony front edge, and water data were recorded with CR10X data logger from late August to late October. Before irrigation, whereas it was 12.8% at non-colony, the soil water content within Tm colony was 8.0% at 0-5cm from the colony front edge, 6.2% at 10-15cm and 6.5-7.5% at 20-40cm. And the content was 12.1% at 80cm distance from the colony edge, which is similar to that at the non-colony. In contrast, ergosterol content which is proportional to the live hyphal biomass was only 0.4${\mu}g$/g fresh soil at the uncolonized soil, while 4.9 $\mu\textrm{g}$/g fresh soil at the front edge where the hyphae actively grow, and 3.8 ${\mu}g$/g fresh soil at the fruiting position, l.1${\mu}g$/g at 20cm distance and 0.4${\mu}g$/g in the 40cm rear area. Generally, in the Tm fungal colony the water content changes were reversed to the ergosterol content changes. While the site was watered during August to October, the soil water contents were 13.5∼23.0% within the fungal colony, whereas it was 14.5∼26.0% at the non-colony. That is, soil water content in the colony was lower by 1.0∼3.0% than that in the non-colonized soil. Our results show that Tm colony consumes more soil water than other parts. Especially the front 30cm within the hyphal colony parts is more critical for soil water absorption.

  • PDF