• 제목/요약/키워드: Ecotoxicological substance

검색결과 2건 처리시간 0.018초

환경호르몬 비스페놀 A가 유도한 위장관 세포독성 제어효과를 가진 마 당단백질이 마우스의 식이 효율 및 악취저감에 미치는 영향 (Dioscorea batatas Decne Glycoprotein Prevents Ecotoxicological Effects of Bisphenol A in Gastrointestinal Epithelial Cells and Improves Fecal Malodor and Feed Efficiency in Mice)

  • 김도완;박문기;김태훈;이세중
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.23-31
    • /
    • 2022
  • As a herbal supplement, Dioscorea batatas Decne (DBD) presents potent antioxidant activity and diverse health benefits. In the present study, functions of a 30 kDa glycoprotein isolated from DBD (hereafter, DBD glycoprotein) in the regulation of feed efficiency and fecal malodor in mice were explored. DBD glycoprotein produced protective effect against cytotoxicity induced by the ecotoxicological endocrine-disrupting substance bisphenol A in gastrointestinal epithelial HT-29 cells. To investigate its potential roles in the regulation of feed efficiency and fecal malodor, mice were administered an oral injection of DBD glycoprotein for 2 weeks. Compared with the control values, the weight of internal organs (liver, heart, kidney, and spleen) and levels of glutamate pyruvate transaminase, glutamate oxaloacetate transaminase, and lactic dehydrogenase were not significantly changed during DBD glycoprotein administration for 2 weeks. Interestingly, DBD glycoprotein improved feed efficiency and reduced hydrogen sulfide concentration without altering the ammonia level in mouse feces. Collectively, these results indicate that DBD glycoprotein is a functional agent that exerts gastrointestinal protective effects against ecotoxicological substances, improves feed efficiency, and reduces fecal malodor.

환경 독성 억제효과를 가진 커큐민 나노스피어가 마우스의 사료 효율 및 악취저감에 미치는 영향 (Effects of Anti-ecotoxicological Curcumin Nanospheres on Feed Efficiency and Fecal Odor in Mice)

  • 박정배;이영민;박문기;민태선;이세중
    • 한국환경과학회지
    • /
    • 제28권2호
    • /
    • pp.183-189
    • /
    • 2019
  • Curcumin ($C_{21}H_{20}O_6$) is a hydrophobic polyphenol found in turmeric. Although curcumin has been used as a natural medicine, its major limitation is related to poor absorption from the gut. Therefore, we developed a method for preparation of Curcumin Nanospheres (CN) to improve the aqueous-phase solubility of curcumin and investigate the functional role of CN in promoting feed efficiency and odor reduction in mice. CN showed inhibitory effects on actate dehydrogenase (LDH) cytotoxicity induced by ecotoxic substance toluene in gut epithelial HCT116 cells. In addition, the weights of internal organs (liver, heart, kidneys, and spleen) and the levels of serum Glutamate Oxaloacetate Transaminase (GOT), Glutamate Pyruvate Transaminase (GPT), and LDH did not show significant differences between mice administered oral CN for two weeks and compared to the control group. Interestingly, CN not only reduced hydrogen sulfide ($H_2S$) and ammonia ($NH_3$) levels and fecal odor, but also improved feed efficiency in mice. These results demonstrate that oral nano-delivery of anti-ecotoxicological CN is a functional system to deliver curcumin to the gut to improve feed efficiency and reduce fecal odor in mice.