DOI QR코드

DOI QR Code

Dioscorea batatas Decne Glycoprotein Prevents Ecotoxicological Effects of Bisphenol A in Gastrointestinal Epithelial Cells and Improves Fecal Malodor and Feed Efficiency in Mice

환경호르몬 비스페놀 A가 유도한 위장관 세포독성 제어효과를 가진 마 당단백질이 마우스의 식이 효율 및 악취저감에 미치는 영향

  • Kim, Do-Wan (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Park, Moon-Ki (Department of Pharmaceutical Engineering, Daegu Haany University) ;
  • Kim, Tae Hoon (FoodyWorm Inc.) ;
  • Lee, Sei-Jung (Department of Pharmaceutical Engineering, Daegu Haany University)
  • 김도완 (대구한의대학교 제약공학과) ;
  • 박문기 (대구한의대학교 제약공학과) ;
  • 김태훈 ((주)푸디웜) ;
  • 이세중 (대구한의대학교 제약공학과)
  • Received : 2021.09.01
  • Accepted : 2021.12.07
  • Published : 2022.01.31

Abstract

As a herbal supplement, Dioscorea batatas Decne (DBD) presents potent antioxidant activity and diverse health benefits. In the present study, functions of a 30 kDa glycoprotein isolated from DBD (hereafter, DBD glycoprotein) in the regulation of feed efficiency and fecal malodor in mice were explored. DBD glycoprotein produced protective effect against cytotoxicity induced by the ecotoxicological endocrine-disrupting substance bisphenol A in gastrointestinal epithelial HT-29 cells. To investigate its potential roles in the regulation of feed efficiency and fecal malodor, mice were administered an oral injection of DBD glycoprotein for 2 weeks. Compared with the control values, the weight of internal organs (liver, heart, kidney, and spleen) and levels of glutamate pyruvate transaminase, glutamate oxaloacetate transaminase, and lactic dehydrogenase were not significantly changed during DBD glycoprotein administration for 2 weeks. Interestingly, DBD glycoprotein improved feed efficiency and reduced hydrogen sulfide concentration without altering the ammonia level in mouse feces. Collectively, these results indicate that DBD glycoprotein is a functional agent that exerts gastrointestinal protective effects against ecotoxicological substances, improves feed efficiency, and reduces fecal malodor.

Keywords

Acknowledgement

이 논문은 농림축산식품의 재원으로 농림식품기술기획평가원의 유용농생명자원산업화기술개발사업의 지원을 받아 수행된 연구임(No. 321095021CG000).

References

  1. Bindhumol, V., Chitra, K. C., Mathur, P. P., 2003, Bisphenol A induces reactive oxygen species generation in the liver of male rats, Toxicology, 188, 117-124. https://doi.org/10.1016/S0300-483X(03)00056-8
  2. Byeon, S., Oh, J., Lim, J. S., Lee, J. S., Kim, J. S., 2018, Protective effects of Dioscorea batatas flesh and peel extracts against ethanol-induced gastric ulcer in mice, Nutrients, 10, 1680-1694. https://doi.org/10.3390/nu10111680
  3. Cheng, Z., O'Connor, E. A., Jia, Q., Demmers, T. G., Wathes, C. M., Wathes, D. C., 2014, Chronic ammonia exposure does not influence hepatic gene expression in growing pigs, Animal, 8, 331-337. https://doi.org/10.1017/s1751731113002127
  4. Cho, I. K., Nam, H. S., Jeon, Y., Na, T. W., Kim, B. J., Kan, E., 2016, Residue study for bisphenol A in agricultural reservoirs, Korean J. Environ. Agric., 35, 270-277. https://doi.org/10.5338/KJEA.2016.35.4.34
  5. Cho, S. B., Hwang, O. H., Yang, S. H., Kwag, J. H., Choi, D. Y., Yang, S. B., Kim, D. H., Park, S. K., 2014, Comparison of volatile organic compound and volatile fatty acid concentration in feces and urine of finishing pigs, Journal of the Korean Society of Grassland and Forage Science, 34, 120-124. https://doi.org/10.5333/KGFS.2014.34.2.120
  6. Choi, E. M., Koo, S. J., Hwang, J. K., 2004, Immune cell stimulating activity of mucopolysaccharide isolated from yam (Dioscorea batatas), J. Ethnopharmacol., 91, 1-6. https://doi.org/10.1016/j.jep.2003.11.006
  7. Deluca, J. A. A., Kimberly, F. A., Menon, R., Riordan, R., Weeks, B. R., Jayaraman, A., Allred, C. D., 2018, Bisphenol-A alters microbiota metabolites derived from aromatic amino acids and worsens disease activity during colitis, Exp. Biol. Med. (Maywood), 243, 864-875. https://doi.org/10.1177/1535370218782139
  8. Duan, Z., Sun, R., Liu, R., Zhu, C., 2007, Accurate thermodynamic model for the calculation of H2S solubility in pure water and brines, Energy & Fuels, 21, 2056-2065. https://doi.org/10.1021/ef070040p
  9. Fan, H., Wu, D., Tian, W., Ma, X., 2013, Inhibitory effects of tannic acid on fatty acid synthase and 3T3-L1 preadipocyte, Biochim. Biophys. Acta., 1831, 1260-1266. https://doi.org/10.1016/j.bbalip.2013.04.003
  10. Goodband, B., Tokach, M., Dritz, S., Derouchey, J., Woodworth, J., 2014, Practical starter pig amino acid requirements in relation to immunity, gut health and growth performance, J. Anim. Sci. Biotechnol., 5, 12-23. https://doi.org/10.1186/2049-1891-5-12
  11. Kim, J. Y., Lee, Y. M., Park, J. P., Lim, K. T., Lee, S. J., 2020, Phytoglycoprotein isolated from Dioscorea batatas Decne promotes intestinal epithelial wound healing, Chin. J. Nat. Med, 18, 738-748.
  12. Kim, K. W., Woo, J. H., Lee, C. Y., Kim, D. H., 2003, Effects of ozonation of the swine nursery building on indoor air quality and growth performance of weanling piglets, Journal of Animal Science and Technology, 45, 1061-1066. https://doi.org/10.5187/JAST.2003.45.6.1061
  13. Kwon, J. B., Kim, M. S., Sohn, H. Y., 2010, Evaluation of antimicrobial, antioxidant, and antithrombin activities of the rhizome of various dioscorea species. Korean Journal of Food Preservation, 17, 391-397.
  14. Lee, S. J., Lim, K. T., 2008, Inhibitory effect of 30-kDa phytoglycoprotein on expression of TNF-alpha and COX-2 via activation of PKCalpha and ERK 1/2 in LPS-stimulated RAW 264.7 cells, Mol. Cell Biochem., 317, 151-159. https://doi.org/10.1007/s11010-008-9843-0
  15. Lee, S. J., Lim, K. T., 2008b, Phytoglycoprotein inhibits interleukin-1beta and interleukin-6 via p38 mitogen-activated protein kinase in lipopolysaccharide-stimulated RAW 264.7 cells, Naunyn. Schmiedebergs Arch Pharmacol, 377, 45-54. https://doi.org/10.1007/s00210-007-0253-8
  16. Liu, X., Kim, J. K., Li, Y., Li, J., Liu, F., Chen, X., 2005, Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells, J. Nutr, 135, 165-171. https://doi.org/10.1093/jn/135.2.165
  17. Ma, Y., Guo, Y., Wu, S., Lv, Z., Zhang, Q., Xie, X., Ke, Y., 2018, Analysis of toxicity effects of Di-(2-ethylhexyl) phthalate exposure on human bronchial epithelial 16HBE cells, Cytotechnology, 70, 119-128. https://doi.org/10.1007/s10616-017-0111-6
  18. Mackie, R. I., Stroot, P. G., Varel, V. H., 1998, Biochemical identification and biological origin of key odor components in livestock waste, J. Anim. Sci, 76, 1331-1342. https://doi.org/10.2527/1998.7651331x
  19. Madane, P., Das, A. K., Pateiro, M., Nanda, P. K., Bandyopadhyay, S., Jagtap, P., Barba, F. J., Shewalkar, A., Maity, B., Lorenzo, J. M., 2019, Drumstick (Moringa oleifera) flower as an antioxidant dietary fibre in chicken meat nuggets, Foods, 8, 307-326. https://doi.org/10.3390/foods8080307
  20. Mcsweeney, C. S., Palmer, B., Bunch, R., Krause, D. O., 2001, Effect of the tropical forage calliandra on microbial protein synthesis and ecology in the rumen, J. Appl. Microbiol, 90, 78-88. https://doi.org/10.1046/j.1365-2672.2001.01220.x
  21. Mirondo, R., Barringer, S., 2016, Deodorization of garlic breath by foods, and the role of polyphenol oxidase and phenolic compounds, J. Food Sci., 81, C2425-C2430. https://doi.org/10.1111/1750-3841.13439
  22. Narkis, N., Henfeld-Furie, S., 1978, Direct analytical procedure for determination of volatile organic acids in raw municipal wastewater, Water Res., 12, 437-446. https://doi.org/10.1016/0043-1354(78)90149-5
  23. Otto, E. R., Yokoyama, M., Hengemuehle, S., Von Bermuth, R. D., Van kempen, T., Trottier, N. L., 2003, Ammonia, volatile fatty acids, phenolics, and odor offensiveness in manure from growing pigs fed diets reduced in protein concentration, J. Anim. Sci, 81, 1754-1763. https://doi.org/10.2527/2003.8171754x
  24. Ozaki, M., Nakamura, M., Teraoka, S., Ota, K., 1997, Ebselen, a novel anti-oxidant compound, protects the rat liver from ischemia-reperfusion injury, Transpl. Int., 10, 96-102. https://doi.org/10.1111/j.1432-2277.1997.tb00548.x
  25. Park, B. B., Lee., S. K., Park, Y. S., 2001, Surface characteristics and adsorption capacity of H2S on the activated carbon impregnated with NaOH, Journal of the Korean Ceramic Society, 38, 319-324.
  26. Ra, J. C., Han, H. J., Song, J. E., 2004, Effect of probiotics on production and improvement of environment in pigs and broilers, Journal of Preventive Veterinary Medicine, 28, 157-168.
  27. Reitman, S., Frankel, S., 1957, A Colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases, Am. J. Clin. Pathol., 28, 56-63. https://doi.org/10.1093/ajcp/28.1.56
  28. Wang, T., He, Q., Yao, W., Shao, Y., Li, J., Huang, F., 2019, The variation of nasal microbiota caused by low levels of gaseous ammonia exposure in growing pigs, Front. Microbiol., 10, 1083. https://doi.org/10.3389/fmicb.2019.01083
  29. Xu, P., Zhou, X., Xu, D., Xiang, Y., Ling, W., Chen, M., 2018, Contamination and risk assessment of estrogens in livestock manure: A case study in jiangsu province, China. Int. J. Environ Res Public Health, 15.
  30. Zahn, J. A., Dispirito, A. A., Do, Y. S., Brooks, B. E., Cooper, E. E., Hatfild, J. L., 2001, Correlation of human olfactory responses to airborne concentrations of malodorous volatile organic compounds emitted from swine effluent, J. Environ. Qual., 30, 624-634. https://doi.org/10.2134/jeq2001.302624x