• Title/Summary/Keyword: Ecotoxicity test

Search Result 78, Processing Time 0.035 seconds

Acute Ecotoxicity Evaluation of 3 Emulsifiable Concentrates Containing Garlic Extract, Zanthoxylum Extract, and Lemon Grass Oil Originated from Plant (식물추출물 마늘 추출액, 잔톡실럼 정유, 레몬그라스 정유 함유 유제 3종의 생태독성평가)

  • You, Are-Sun;Hong, Soon-Sung;Jeong, Mihye;Park, Kyung-Hun;Chang, Hee-Seop;Lee, Je Bong;Park, Jae-Yup
    • The Korean Journal of Pesticide Science
    • /
    • v.16 no.4
    • /
    • pp.376-382
    • /
    • 2012
  • Environment-friendly agro-materials are are likely to be preferred to chemical insecticides recently. For this reason, many studies are conducted to develop environment-friendly insecticides containing natural materials. This study was also conducted so as to assess ecotoxicity for Emulsifiable concentrate (EC) containing 30% of garlic extract or two plant essential oils (Zanthoxylum, Lemongrass) expected to prevent from pests and be used for agro-materials. Target species used to assess acute toxicity were invertebrate (Daphina magna), fish (Oryzias latipes), honeybee (Apis mellifera L.) and earthworm (Eisenia fetida). The $EC_{50}$ values for of garlic extract 30% EC, Zanthoxylum oil 30% EC and lemongrass oil 30% EC to Daphina magna were 3.3, 10, and $10mg\;L^{-1}$, respectively. The category of garlic extract 30% EC was moderately toxic, while those of Zanthoxylum oil 30% EC and lemongrass oil 30% EC were slightly toxic according to standard of USEPA. $EC_{50}$ for both of Zanthoxylum oil 30% EC and lemongrass oil 30% EC were more than $10mg\;L^{-1}$ then they were considered as slightly toxicity. In case of acute toxicity test to fish, $LC_{50}$ of garlic extract 30% EC was $3.3mg\;L^{-1}$. Zanthoxylum oil 30% EC and lemongrass oil 30% EC indicated $LC_{50}$ > $10mg\;L^{-1}$. Classification of acute toxicity to all test substances was in Korea criteria. Acute contact and oral toxicity test to Honeybee were conducted. As a result, $LD_{50}$ of all test substances were more than 100 a.i. ${\mu}g\;bee^{-1}$ in the acute contact test while $LD_{50}$ of garlic extract 30% EC was 4.4 a.i. ${\mu}g\;bee^{-1}$ and $LD_{50}$ of Zanthoxylum oil 30% EC and lemongrass oil 30% EC were more than 100 a.i. ${\mu}g\;bee^{-1}$. In case of acute toxicity test to earthworm, $LC_{50}$ of garlic extract 30% EC, Zanthoxylum oil 30% EC and lemongrass oil 30% EC were 267, 592, and $430mg\;kg^{-1}$, respectively. In conclusion, if the safety for earthworm is confirmed, these substances are expected to be use for environment-friendly insecticide materials with low risk against ecosystem and contribute to developing environment-friendly agro-materials.

Evaluation of Daphniamagna for the Ecotoxicity Assessment of Alkali Leachate from Concrete

  • Choi, Jae Bang;Bae, Sung Min;Shin, Tae Young;Ahn, Ki Yong;Woo, Soo Dong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The cladoceran Daphniamagna has been used as an aquatic test species in aquatic toxicology. To evaluate the aquatic toxicity of leachate from concrete, the immobilization of D. magna was observed after treatment of various concentrations of leachate specimens. Reliabilities of the culture condition and the experimental protocol for acute toxicity test were successfully achieved from the standard toxicity test. The leachates were prepared from the mixture of Ordinary Portland Cement (OPC) and pozzolanic admixtures, Pulverised fuel ash (PFA), Ground granulated blast furnace slag (GGBS) and GGBS containing loess. Acute toxicity test showed 100% immobilization of D. magna for OPC or PFA. The leachates from OPC or PFA had high pH 10 to 12. However, GGBS and GGBS containing loess showed less toxicity according to the concentrations. Especially, immobilization was not observed at the concentrations below 12.5% of GGBS containing loess. Also the range of pH for these specimens was 8 to 9. This suggested that the use of loess as the admixture in concrete may be useful to reduce eco-toxicity of leachates from concrete. This our study provided the harmfulness of the alkali leaching from concrete in aquatic environment and the usefulness of D. magna to evaluate the toxicity of leachates from concrete.

Ecotoxicity Assessment of Silver Nanomaterials with Different Physicochemical Characteristics in Diverse Aquatic Organisms (다양한 특성의 은나노물질이 수생생물에 미치는 독성영향평가)

  • Hong, Nam-Hui;Jung, Youn-Joo;Park, June-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.183-192
    • /
    • 2016
  • Silver nanomaterials have been intensively applied in consumer products of diverse industrial sectors because of their strong biocidal properties and reported to be hazardous to aquatic organisms once released in the environment. Nanomaterials including sliver, are known to be different in toxicity according to their physicochemical characteristics such as size, shape, length etc. However studies comparing toxicity among silver nanomaterials with different physicochemical characteristics are very limited. Here, toxicities of silver nanomaterials with different size (50, 100, 150 nm), length (10, $20{\mu}m$), shape (wire, sphere), and coating material (polyvinylpyrrolidone, citrate) using OECD test guidelines were evaluated in aquatic species (zebrafish, daphnia, algae) and compared. On a size property, the smaller of silver nanomaterials, the more toxic to tested organisms. Sphered type of silver nanomaterials was less toxic to organisms than wired type, and shorter nanowires were less toxic than longer ones. Meanwhile the toxic effects of materials coated on silver nanomaterials were slightly different in each tested species, but not statistically significant. To the best of our knowledge, it is first investigation to evaluate and compare ecotoxicity of silver nanomaterials having different physicochemical characteristics using same test species and test guidelines. This study can provide valuable information for human and environmental risk assessment of silver nanomaterials and guide material manufacturers to synthesize silver nanomaterials more safely to human and environment.

Phytoplankton as Standard Test Species for Marine Ecotoxicological Evaluation (해양생태독성평가를 위한 표준시험생물로서의 식물플랑크톤에 관한 연구)

  • Park Gyung-Soo;Lee Sang-Hee;Lee Seung-Min
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1129-1139
    • /
    • 2005
  • A series of experiments was conducted to identify the potential of five phytoplankton species as standard test species for marine ecotoxicological tests. The candidate phytoplankton species are Skeletonema costatum, Heterosigma akashiwo, Prorocentrum micans, Isochrysis galbana, and Tetraselmis suecica. Salinity tolerance and sensitivity on potassium dichromate as a reference material were identified. Toxicity of eleven ocean dumped sewage sludges and four red tide expellent extracts were estimated by the inhibition of population growth rates (PGR) of marine diatom S. costatum, While most species revealed relatively weak tolerance on salinity, T. suecica demonstrated the highest salinity tolerance ranged from $5\~35$ psu and the others $15\~35$ psu. H. akashiwo revealed the highest sensitivity as 72h $IC_{50}$=0.76mg/L and T. suecica the lowest as 72h $IC_{50}$=8.89mg/L on potassium dichromate. Sludge extracts from industrial waste, domestic sewage and livestock farm waste sludge showed high toxicity as 72h $IC_{50}$<$2\%$ and lowest toxicity from filtration bed sludge as 72h $IC_{50}$=$30.50\%$ NOEC (No Observed Effective Concentration) of sludge extract ranged from <$0.4\%$ to $1.6\%$ and this indicated high phytotoxicity of ocean dumped sewage sludge. The test sensitivity of phytoplankton PGR inhibition was much higher than those of marine rotifer Brachionus plicatilis mortality test and bioluminescent inhibition test by marine bacteria Vibrio fischeri, and comparable with the sea urchin (Strongylocentrotus intermedius) fertilization test. As a result the phytotoxicity test using phytoplankton PGR inhibition ($IC_{50}$) must be a useful tool for marine phyto-toxicological evaluation of ocean dumped materials.

Acute Ecotoxicity Evaluation of Environmental-friendly Organic Agro-materials Containing Pepper Extract, Cassia Oil, Lavender Oil for Control of Diamondbackmoth (배추좀나방 방제약제로서 후추 추출물, 카시아 오일, 라벤더 오일 함유 친환경유기농자재에 대한 급성 생태독성평가)

  • You, Are-Sun;Jeong, Mihye;Hong, Soon-Seong;Chang, Hee-Seop;Lee, Je Bong;Park, Kyung-Hun;Lee, Young Mook;Ihm, Yangbin
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.343-349
    • /
    • 2013
  • Environment-friendly agro-materials tend to be preferred to chemical insecticides recently. For this reason, many studies are conducted to develop environment-friendly insecticides containing natural materials. The purpose of this study was to assess ecotoxicity for pepper extract and cassia oil (11.5+46%, A), pepper extract and cassia oil (23+34%, B), and pepper extract and lavender oil (40+10%, C). They are expected to prevent from pests especially diamondback moth, and can be used for agro-materials. Their formulation was emusifiable concentration (EC). Target species used to assess acute toxicity were aquatic invertebrate (Daphina magna), fish (Cyprinus carpio), honeybee (Apis mellifera L.) and earthworm (Eisenia fetida). The $EC_{50}$ value of A, B, and C to aquatic invertebrate were 0.46, 1.9, 0.25 mg $L^{-1}$ respectively and these values were moderately toxic according to standard of USEPA. In case of acute toxicity test to fish, the $LC_{50}$ of A, B, and C were 1.9, 2.9, 3.8 mg $L^{-1}$ respectively. A was category II in acute toxicity of fish and not acceptable to evaluation criteria of environment-friendly agro-materials. B and C were category III and acceptable. Acute contact and oral toxicity test to honeybee were conducted and the $LD_{50}$ of A, B, and C were > 100 ${\mu}g$ a.i. $bee^{-1}$ in both of tests. It indicated they were low toxic to honeybee. In case of acute toxicity test to earthworm, $LC_{50}$ of A, B, and C were 695, 988, and 564 mg $kg^{-1}$. In conclusion, pepper extract+cassia oil 57% EC and pepper extract+lavender oil 50% EC were expected to be used for environment-friendly insecticide materials with low risk against ecosystem and contribute to developing environment-friendly agro-materials.

Acute Ecotoxicity Evaluation of Thyme White, Clove Bud, Cassia, Lavender, Lemon Eucalyptus Essential Oil of Plant Extracts (식물추출물 싸임화이트, 클로브버드, 계피, 라벤더, 레몬 유칼립투스 정유의 생태독성평가)

  • You, Are-Sun;Choi, Young-Woong;Jeong, Mi-Hye;Hong, Soon-Seong;Park, Yeon-Ki;Jang, Hui-Sub;Park, Jae-Yup;Park, Kyung-Hun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2011
  • Environment-friendly agro-materials tend to be preferred to chemical insecticides recently. For this reason, many studies were conducted to develop environment-friendly insecticides containing natural materials. The purpose of this study was to assess ecotoxicity for 5 plant essential oils (Thyme white, Clove bud, Cassia, Lavender, Lemon eucalyptus) expected to prevent from pests and be used for agro-materials. Target species used to assess acute toxicity were aquatic invertebrate (Daphina magna), fish (Oryzias latipes), honeybee (Apis mellifera L.) and earthworm (Eisenia fetida). The EC50 value, toxicological responses of thyme white, clove bud, and cassia to Daphina magna were 2.5, 2.8, and $6.9mg\;L^{-1}$ respectively and these values were moderately toxic according to standard of USEPA. $EC_{50}$ of Lavender and lemon eucalyptus were >$10mg\;L^{-1}$ then they were considered as slightly toxicity. In case of acute toxicity test to fish, $LC_{50}$ of thyme white and cassia were 6.7 and $7.5mg\;L^{-1}$ each other. The other plant essential oils indicated $LC_{50}$ >$10mg\;L^{-1}$. Acute contact and oral toxicity test to Honeybee were conducted. As a result, $LD_{50}$ of all essential oils were >$100{\mu}g$ a.i. $bee^{-1}$ in both of tests. In case of acute toxicity test to earthworm, $LC_{50}$ of thyme white, clove bud, cassia, lavender, and lemon eucalyptus were 149, 230, 743, 234, and $635mg\;kg^{-1}$, respectively. In conclusion, if the safety for earthworm is confirmed, 5 plant essential oils are expected to be use for environment-friendly insecticide materials with low risk against ecosystem and contribute to developing environment-friendly agro-materials.

Ecotoxicological Study of Gammarus sobaegensis by pH Depression in Artificial Channels - Drift behavior - (인공수로에서 산성화 영향에 따른 소백옆새우(Gammarus sobaegensis)의 생태독성학적 연구 - 표류행동을 중심으로 -)

  • Park, Jung-Ho;Cho, Dong-Hyun;Jung, Geun
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.153-161
    • /
    • 2000
  • This study was carried out to examine the drift of Gammarus sobaegensis by acid stress as pH depression in Oweol creek from April 1996 to October 1996. The behavioral drifting was revealed to the characteristics of G. sobaegensis that is tend to increase as acid stress. And, tolerance level of G. sobaegensis to pH depression was different among the size classes. Individuals belong to small to medium size classes were weak in lower pH. Pattern of response in G. sobaegensis has a lower tolerance to acid stress at below pH 4.0 than above pH 5.0 in the artificial channel and show the possibility as an effective aquatic ecotoxicity test organism. The result of analysis of variance, water temperature (F-ratio : 66.596, p< 0.0005) and the size classes (F-ratio : 71.386, p< 0.0005) except pH level (F-ratio : 353.415, p<0.0005) were showed to the major factor for drift behavior by acid depression. [Gammarus, pH, Drift, Acid stress, Ecotoxicity test].

  • PDF

A Study of Environmental Conditions of Survival Rate and Relative Growth Rate in Female Gametophyte of Undaria pinnatifida for Toxicity Assessment (생태독성평가를 위한 미역(Undaria pinnatifida) 암배우체 생존율 및 상대성장률의 환경조건 연구)

  • Ju-Wook, Lee;Yun-Ho, Park;Bo-Ram, Sim;Hyong-Joo, Jeon;Seung, Heo;Un-Ki, Hwang
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • The ecotoxicity test method using Undaria pinnatifida spore is challenging to use throughout the year. Since U. pinnatifida female gametophytes can be cultured in the laboratory, they can be used for ecotoxicity testing at any time. Changes in female gametophyte survival rate and relative growth rate in U. pinnatifida exposed to various environmental conditions were analyzed. The female gametophyte of U. pinnatifida was exposed to salinity (5~40 psu), temperature (5~30℃), pH (4~10), and light intensity (0~120 μmol photon m-2 s-1). Based on the highest average value, the survival rate of female gametophyte was highest at a temperature of 20℃, salinity 27.5 psu, pH 8, and light intensity 30 μmol photon m-2 s-1. And the relative growth rate was highest at a temperature of 15℃, salinity 35 psu, pH 9, and light intensity of 60 μmol photon m-2 s-1. As a result of this study, the method using the optimal conditions for the survival rate and relative growth rate is expected to be a practical test method that can complement the current method.

Ecotoxicity Test of Wastewater by a Battery of Bioassay and Toxicity Identification Evaluation (다양한 시험생물종을 이용한 산업폐수 생태독성 평가 및 원인물질 탐색)

  • Ryu, Tae-Kwon;Cho, Jae-Gu;Kim, Kyung-Tae;Yang, Chang-Yong;Joung, Ki-Eun;Yoon, Jun-Heon;Choi, Kyung-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Toxicity identification and quantification are important factors to evaluate the effect of industrial effluent on the aquatic environment. In order to measure the potential and real toxicity of mixed chemicals in the effluents, the biological method (i.e., WET test) should be used as well as chemical analysis method. In this study, we conducted WET test for various kinds of industrial effluents using aquatic organisms such as water flea (Daphnia magna), algae (Pseudokirchneriella subcapitata), fish (Oryzias latipes, Danio rerio), and microorganism (Vibrio fisheri). In addition, we carried out chemical analysis and TIE (Toxicity Identification Evaluation) for effluents in order to identify the substances causing toxicity. Among the 30 kinds of wastewater, S13 showed the highest eco-toxicity and $Ca^{2+}$ and $Cl^-$ ion were suspected as major compounds causing toxicity for aquatic organisms. In order to confirm these suspected compounds, various confirmation procedures need to be carried out.

Application of Daphnia magna Monitoring System for Real-time Ecotoxicity Assessment (실시간 생태독성 평가를 위한 물벼룩 감시장치 적용성 검토)

  • Lee, Jang-Hoon;Ko, Woong-Tae
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.1-12
    • /
    • 2019
  • In this study, TI(Toxic Index) of Daphnia toximeter corresponded to ecological toxicity standard 1 TU(Toxic Unit) was set up using Daphnia toximeter and when operating NOEC(water quality standards for drinking water) and $EC_{50}$ Daphnia toximeter alarm was issued appropriately, which enables real time ecological toxicity evaluation. I studied to get a good shot and the research was conducted by investigating domestic and international related data and conducting a preliminary study. 6 of 59 hazardous substances (As, Hg, Cr, Diazinon, Dioxane, and Phenol) recommended by the water quality monitoring items for artificial river water were selected and static, dynamic and quality management test, TI was shown to be good in other materials except Diazinon, and as a result of $EC_{50}$ spiking test, TI was matched to TU by distinguishing between 1 TU and 1 TU. in suggesting the complementary point of ecological toxicity management system and the future of research on water Daphnia toximeter.