• 제목/요약/키워드: Ecosystem stability

검색결과 104건 처리시간 0.025초

지형구조와 나무밀도가 산불패턴에 미치는 영향 (Effects of Geological Structure and Tree Density on the Forest Fire Patterns)

  • 송학수;권오성;이상희
    • 한국농림기상학회지
    • /
    • 제16권4호
    • /
    • pp.259-266
    • /
    • 2014
  • 산불 확산 패턴 분석은 산림 생태계 안정화를 이해하는데 중요한 요소이다. 하지만 규모의 문제로 인해 실제적인 실험이 불가능하여 많은 학자들이 시뮬레이션 모델을 이용하여 산불 확산의 행동기작을 이해하고 산림 피해를 예측하였다. 그러나 많은 모델들이 연료의 종류, 바람, 습도 같은 여러 환경 요소들의 복잡한 관계를 표현하는데 한계를 가지고 있다. 본 논문에서는 지형의 구조와 두 종의 나무들로 구성된 산림에서 미치는 영향을 분석하는 간단한 모델을 제안하였다. 두 종의 나무는 가연성이 높은 나무와 가연성이 낮은 나무가 있으며, 서로 다른 산불 전이 확률을 가지고 있다. 전체 나무는 시뮬레이션 공간에 0.5에서 1.0까지의 비율로 무작위로 배치된다. 가연성이 높은 나무는 가연성이 낮은 나무 보다 높은 산불 전이 확률을 가진다. 전소한 나무의 수를 기준으로 지형의 구조와 전체 나무의 밀도가 산불 확산에 얼마나 영향을 미치는지 민감도를 분석하였다. 우리는, 본 논문에서 제시한 모델이 앞으로 산불 확산 패턴을 연구하는데 유용할 것으로 기대한다.

대암산 작은용늪 및 애기용늪 생태현황분석 (Ecosystem Analysis for Little Yong-neup, Baby Yong-neup in Daeam-san in Korea)

  • 이란;박은경;박미옥;구본학
    • 한국환경복원기술학회지
    • /
    • 제17권4호
    • /
    • pp.43-56
    • /
    • 2014
  • In this study, ecological investigation was performed on Yong-neup, Daeam-san for 5 times. This area is considered DMZ zone located between Yanggu-gun and Inje-gun, Gangwon-do, where has been recognized highly valuable for ecological preservation. As a result, Sphagnum and hydrophobic vegetation were found in Little Yong-neup, revealing its characteristics of high moor, where as no Sphagnum were found in Baby Yong-neup. Thereby, the carnification has been investigated in both Little Yong-neup and Baby Yong-neup. A main cause of damage was associated with the creation of stating rink and increases of visitors. The damages of vegetation in Little Yong-neup and Baby Yong-neup have been intensified by road construction or uses of groundwater while relocating military troops to upper stream of Little Yong-neup and Baby Yong-neup, further causing the damages of water circulation system and soil erosion. These artificial factors have caused the carnification of wetland protection areas including Little Yong-neup. The terrestrial vegetations, such as Plantago asiatica, Geranium Koreanum and Artemisia feddei have increased compared to current survey conducted by the Ministry of Environment. 5 endangered species, such as Lychnis wilfordii and Trientalis europaea and 5 other introduced species, such as Aster pilosus and Taraxacum officinale were found. 10 different species of mammal and 2 species of amphibian were investigated; and in addition to this, a original form of Sphagnum fens, the remaining wetland was found. Therefore, this study is to identify the causes of damages in Little Yong-neup and Baby Yong-neup through their ecological survey and accordingly proposing a direction for ecological restoration through the improvement of water circulation system, creation of habitats for plant and animal, restoration of vegetation through eco-friendly materials and indigeneity, relocation of the current military troops, securing of structural stability.

수환경 적응도에 따른 식물 목록 구축 및 도시 수 공간에 적용 가능한 식물 분류특성 (Inventory Development according to Aquatic Environment Fitness and Classification Characteristics of Plants for Urban Water Space)

  • 이란;권효진;김형국;박미옥;구본학;최일기
    • 한국환경복원기술학회지
    • /
    • 제16권2호
    • /
    • pp.93-104
    • /
    • 2013
  • The purpose of this study was to develop a list of plants that adapted to the aquatic environment in urban areas based on the list of plants surveyed through literature review and field surveys, and to classify the types of vegetation according to the five categories of plant distributions set by the U.S. Fish and Wildlife Service (1988) in the aspect of the adaptability of plants to the aquatic environment. Results of the classification by category according to the adaptability to the aquatic environment for the plant species surveyed through literature review and field surveys showed that there are 45 species of OBL, 96 species of FACW, 66 species of FAC, and 94 species of FACU, totaling 650 species. In addition, a total of 50 species excluding exotic species, endangered species, and naturally introduced plants are proposed as appropriate plants for the urban aquatic environment that will be artificially constructed. The results of the study can be utilized as the basic information for maintaining diversity and stability of the ecosystem during the restoration of water ecology; they can serve as useful data for the development of an optimum vegetation model when planting in water spaces in the future and preparing proper planting plans for each space. In addition, it is believed that the information will be useful in wetland identification and evaluation by observing plant species that appear only in wetlands.

생태계 제어 시설물의 설계 및 배치 최적화(1) -연승식 양식시설의 계류력 특성 및 동요저감에 관한 연구- (Structural and Layout Design Optimization of Ecosystem Control Structures(1) -Characteristics of Mooring Force and Motion Control of the Longline Type Scallop Culturing Facility-)

  • 류청로;김현주
    • 한국수산과학회지
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 1995
  • To develop the optimal design method for the longline type scallop culturing facilities in the open sea numerical calculations and hydraulic model experiments are carried out for the stability and function optimization. Using the results for the motion and tension of the facilities, stable design concepts and effects of motion control system by vertical anchor and resistance discs art discussed. The results of this study that can be applied to the design are as follows: 1) Total external forces by design wave $(H_{1/3}\;=\;6,7\;m,\;T_{1/3}\;=\;12sec)$ at the coastal waters of Jumunjin for unit facility (one main line) are estimated to 5-20 tons, and required anchor weights are 10-40 tons in the case of 2-point mooring system. Though the present facilities are stable to steady currents, but is unstable to the extreme wave condition of return period of 10 years. 2) The dimensions and depth of array systems must be designed considering the ecological environments as well as the physical characteristics including the mooring and holding forces that are proportional to the length and relative depth of main line to wave length, and the number of buoys and nets. 3) Oscillation of the facility is influenced by water particle motion and the weight of hanging net, and is excited at both edge, especially at the lee side. To reduce the motion of the nets, the vertical anchoring system and the resistence disc method are recommended by the experimental results, 4) The damage of rope near the anchor by abrasion should be prevented using the ring-type connection parts or anchor chains.

  • PDF

도시공원녹지의 생태성 및 기후변화 대응성 평가 기초 연구 (A Preliminary Study on Assessment of Urban Parks and Green Zones of Ecological Attributes and Responsiveness to Climate Change)

  • 성현찬;황소영
    • 한국환경복원기술학회지
    • /
    • 제16권3호
    • /
    • pp.107-117
    • /
    • 2013
  • Problems in regard of ecological stability of urban ecosystem ensue from climate change and urbanization. Particularly, urban ecological conditions are deteriorating both quantitatively and qualitatively to a great extent. The present study aims to assess the current condition of selected sites (i. e. urban green zones and parks) in terms of preset assessment components; to find out problems and relevant solutions to improve the quality and quantity of parks and green zones; and ultimately to suggest some measures applicable to coping with climate change as well as to securing the ecological attributes of urban green zones and parks. According to the findings of this study, from quantitative perspectives, ecological attributes and responsiveness to climate change are high on account of the large natural-soil area(80%). By contrast, from qualitative perspectives including the planting structure (1 layer: 47%), the percentage of bush area(17%), the connectivity with surrounding green zones (independent types: 44%), the wind paths considered (5.6%), the tree species with high carbon absorption rates (20%), water cycles (17%), energy (8%) and carbon storage capacities(61%), ecological attributes and responsiveness to climate change were found very low. These findings suggest that the ecological values of urban parks and green zones should be improved in the future by conserving their original forms, securing natural-soil grounds and employing multi-layered planting structures and water bodies, and that responsiveness to climate change should be enhanced by planting tree species with high carbon storage capacities and obtaining detention ponds. In sum, robust efforts should be exerted in the initial planning stages, and sustained, to apply the methodology of green-zone development along with securing ecological attributes and responsiveness to climate change.

${\cdot}$저준위 방사성폐기물 처분 콘크리트 구조물의 장기적 내구성 확보를 위한 방안 검토 (A Study on the Methodology to Ensure Long-Term Durability of Low and Intermediate Level Radwaste Disposal Concrete Structure)

  • 김영기;이병식;이용호
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.211-220
    • /
    • 2005
  • ${\cdot}$저준위 방사성폐기물 처분시설의 주 인공방벽으로 콘크리트 구조물이 고려되고 있다. 콘크리트는 투수성이 낮아 물의 침투를 최소화할 수 있으며, 핵종 물질의 누출 차단에도 효과적이기 때문이다. 그러나 콘크리트에 열화가 발생하면 처분구조물의 구조적 안정성이 낮아지며, 투수성이 증가하여 외부로부터 물의 침투로 인한 핵종물질 누출 가능성이 높아진다. 따라서 처분구조물의 오염물질 격리 성능을 증진하기 위해서는 콘크리트의 열화를 최소화하여야 한다. 콘크리트 구조물의 대표적 열화 원인으로 황산염의 침투, 염화물 침투에 의한 철근 부식, 칼슘 수산화물의 침출, 알카리-골재 반응, 그리고 구조물의 반복적인 동결-융해가 있다. 이러한 열화과정의 공통적 원인은 구조물에 물 및 유해한 화학물질이 침투하기 때문이다. 본 논문에서는 이러한 열화원인 및 메커니즘 검토에 기초하여 인공방벽으로서 콘크리트 처분구조물의 장기적 내구성을 확보하기 위한 설계 및 설계수명 평가 방안을 검토하였다.

  • PDF

식생모형에 의한 항로매몰 저감 특성 (Reduction Effect for Deposition in Navigation Channel with Vegetation Model)

  • 이성대;김성득;김익현
    • 한국항해항만학회지
    • /
    • 제36권8호
    • /
    • pp.659-664
    • /
    • 2012
  • 연안 해역에 분포하는 식생은 연안 생태계의 다양성을 유지하면서 해저에 고정되어 이들 연안식생은 파랑을 감쇠할 뿐 만 아니라 표사이동 및 해저변동을 저감하는 역할을 하고 있다. 이같은 관점에서 식생모형은 경관이나 연안해역에 영향을 최소화 하면서 파랑을 저감하거나 해저바닥을 안정시키는 효과적적인 방법 중의 하나이다. 본 연구에서는 파랑에 의한 항로 매몰특성을 해석하기 위해 수치 및 수리모형실험을 통해 검토하였으며 이를 위해 사용된 수치모형은 항로 전 후면부에 식생 유무에 따른 파랑감쇠 및 해저지형 변동 특성을 해석하기 위해 개발되었다. 수치모형실험의 결과와 비교를 위해 항로매몰 저감을 위한 식생모형의 효과를 파악하기 위하여 수리모형실험을 수행하였으며, 이들 실험 결과 식생이 항로 매몰 저감에 효과적임을 확인하였다. 그리고 수치 및 수리모형 실험 결과가 대체적으로 잘 일치하고 있음을 알 수 있었다.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

입지 환경 인자를 이용한 DMZ 남측 철책선 주변 훼손지 유형화 (Classification of the Damaged Areas in the DMZ (Demilitarized zone) by Location Environments)

  • 박기쁨;김상준;이아영;김동학;유승봉
    • 한국환경복원기술학회지
    • /
    • 제24권2호
    • /
    • pp.71-84
    • /
    • 2021
  • Restoration of DMZ has come up with the discussion on the peaceful use of the DMZ and the conservation plan of the army. In this study, we aim to identify soil characteristics of 108 sites to figure out environmental conditions around the iron fence of DMZ where vegetation has been removed repeatedly. Based on the soil characteristics and climate variables, hierarchy clustering was performed to categorize sites. As a result, we categorized 108 sites into 4 types: middle elevation region, lowland, East coast lowland, other areas. Group of 'other area' is only high in nutrient and clay proportion. Others are in igneous rock and metamorphic rocks with a high proportion of sand and lower nutrients than the optimum range of growth in Korean forest soil. The middle elevation region has a high altitude, low temperature. The east coast lowland has a high temperature in January and low precipitation. The lowland has a low altitude and high temperature. This category provides the environmental condition around the DMZ fence and can be used to select plants for restoration. The restoration project around the DMZ iron fence should satisfy the security of military plans, which means that functional restoration is prior to ecological restoration such as vegetation management under a power line. Additionally, improvement of soil quality and surface stability through restoration projects is required to enhance the resilience of the ecosystem in DMZ.

설악산, 지리산, 한라산 산정부의 식생과 경관 특성 (Vegetation and Landscape Characteristics at the Peaks of Mts. Seorak, Jiri and Halla)

  • 공우석;김건옥;이슬기;박희나;김현희;김다빈
    • 한국기후변화학회지
    • /
    • 제8권4호
    • /
    • pp.401-414
    • /
    • 2017
  • Vegetation and landscape characteristics at the three highest summits of Republic of Korea, i.e. Seoraksan, Jirisan and Hallasan, are analyzed on the basis of species composition, physiognomy, vegetation distribution and structure of alpine plants, along with landform, geology, soil and habitat conditions. Dominant high mountain plants at three alpine and subalpine belts contain deciduous broadleaved shrub, Rhododendron mucronulatum var. ciliatum (31.6%), and evergreen coniferous small tree, Pinus pumila (26.3%) at Seoraksan, deciduous broadleaved tree, Betula ermanii (35.3%), evergreen coniferous tree, Picea jezoensis (23.5%) at Jirisan, and evergreen coniferous tree, Abies koreana (22.6%), deciduous broadleaved shrub, Rhododendron mucronulatum var. ciliatum, and Juniperus chinensis var. sargentii (19.4%) at Hallasan, respectively. Presence of diverse landscapes at the peak of Seoraksan, such as shrubland, grassland, dry land along with rocky areas, and open land may be the result of hostile local climate and geology. High proportion of grassland and wetland at the top of Jirisan may related to gneiss-based gentle topography and well developed soil deposits, which are beneficial to keep the moisture content high. Occurrence of grassland, shrubland, dry land, conifer vegetation, and rocky area at the summit of Hallasan may due to higher elevation, unique local climate, as well as volcanic origin geology and soil substrates. Presences of diverse boreal plant species with various physiognomy at alpine and subalpine belts, and wide range of landscapes, including rocky, grassland, shrubland, wetland, and conifer woodland, provide decisive clues to understand the natural history of Korea, and can be employed as an relevant environmental indicator of biodiversity and ecosystem stability.