• Title/Summary/Keyword: Ecosystem services mismatch

Search Result 2, Processing Time 0.017 seconds

Spatial Analysis on Mismatch Between Particulate Matter Regulation Services Supply and Demand in Urban Area - A Case Study of Suwon - (도시녹지 미세먼지 조절 서비스 수요와 공급의 공간적 차이 분석 - 수원시를 대상으로 -)

  • Kang, Da-In;Kwon, Hyuk-Soo;Choi, Tae-Young;Park, Chan;Kim, Sung-Hoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.57-69
    • /
    • 2021
  • Urban green spaces supply ecosystem services (ESs), which are consumed by city residents and generate demand, to improve air quality. It is important to determine supply and demand for ESs and reduce the gap for efficient management. This study proposed a method to use the concept of supply and demand for ESs in the decision-making process for urban planning or management. PM10 concentrations were converted to weight for demand assessment on PM10 reduction, and PM10 absorption capacity of all green spaces including the forests, and that of urban green spaces excluding forests, was calculated for each supply assessment. The differences in the calculated supply and demand were analyzed to derive the mismatched regions in Suwon. As a result, regions with big forested areas showed sufficient supply, indicating that the degree of mismatch among administrative neighborhoods (dong) varied greatly depending on whether they had a forest. An analysis of only urban green spaces showed that all neighborhoods lacked supply. Forests with high PM10 absorption capacity had a great effect, but urban green spaces can be considered a key element in reducing PM10 in daily life. Considering the mismatch of supply and demand, spatial distribution, and population distribution, it is possible to prioritize the supply of urban green spaces to reduce PM10 and, furthermore, support decision making for priority zones subject to forest conservation and designation and cancellation of green spaces, which gives significance to this study.

A Risk Assessment of Orchard Pollination Services using a Species Distribution Model for Wild Pollinators (야생화분매개곤충 분포 모형을 활용한 과수원 수분 서비스 위험도 평가)

  • Koh, In-Su;Choe, Hye-Yeong;Kwon, Hyuk-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.29-41
    • /
    • 2020
  • Wild pollinators provide important pollination services for crops. However, their geographical ranges and impact on pollination services have not been fully explored within the scope of Korean agricultural land. This study aims to identify spatial supply-demand mismatches across orchard fields in the context of assessing pollination service risk. We first used National Ecosystem Survey data and a species distribution model (MaxEnt) to develop the geographic range of each of 32 wild pollinators belonging to three families (Diptera, Hymenoptera, and Lepidoptera). We then summed the modeled presence probability of each species to obtain a measure of spatially explicit pollinator richness. This modeled richness, defined as pollination supply, was compared with the summed area of orchard fields at the municipal boundary level to identify areas with supply-demand mismatches. The study found that Lepidoptera showed the highest species richness (8.3±1.5), followed by Hymenoptera (4.3±0.8) and Diptera (3.5±0.8) species. Median orchard area was 1.5 ㎢ (range of 0-176.7 ㎢) among 250 municipal regions in South Korea. The municipal regions were divided into three categories (tertiles) of low, middle, and high pollination supply and demand according to, respectivley, average polliator richness and orhard area. Finally, we found that 55 municipal regions (accounting for 49% of national orchard land) potentially faced high risk of pollination deficits, 81 regions (48% of national orchard land) faced intermediate risk, and 63 regions faced low risk (3% of national orchard land). In conclusion, this study revealed significant mismatch between pollination supply and demand and developed risk assessment map will guide our future efforts on pollinator habitat conservation and monitoring to conserve crop pollination services.