• Title/Summary/Keyword: Ecosystem/Ecological System

Search Result 297, Processing Time 0.031 seconds

Preliminary Diagnosis for Pulsing Simulation of Low Trophic Ecosystem by Environmental Changes in Coastal Area (연안해역의 환경변화에 따른 저차 생태계 Pulsing Simulation 예비 진단)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • In general, long-term changes of ecological factors take a pulse form in which they interact with other factors and go through a repeated increasing and decreasing cycle. The coupling of the two approaches the grid model and the box model in ecological modeling can lead to an in-depth understanding of the environment. The study analyzes temporal variations of major storages with an energy system model that formulizes effectively the relationships among nutrients, phytoplankton, and zooplankton in the Yellow Sea and the East China Sea. An increase of light intensity and standing stock of nutrient increase the magnitude and frequency of pulsing. Also, an immense reduction of nutrient concentration can cause extinction of the pulsing and bring about a steady state. It is concluded that the nutrient loads in freshwater discharge from the Yangtze affect the cycles of major ecological components as well as water quality variables and play an important role in the marine ecosystem.

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park;Seung Jin Joo;Jaseok Lee;Dongmin Seo;Hyun Seok Kim;Jihyeon Jeon;Chung Weon Yun;Jeong Eun Lee;Sei-Woong Choi;Jae-Young Lee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.264-271
    • /
    • 2023
  • Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

Design of Lake Ecological Observation Data Management

  • Ahn, Bu-Young;Jung, Young-Jin;Lee, Myung-Sun;Jeong, Choong-Kyo;Kim, Bom-Chul
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • To protect water pollution and scarcity in lake and river, water quality monitoring applications have become important tools to understand the change of aquatic ecosystem. KLEON (Korean Lake Ecological Observatory Network) is designed to manage and share the ecological observations. The various kinds of water quality and phytoplankton observations are collected from the selected observatories such as seven lakes/rivers/wetlands. To deeply understand the collected observations with weather, KLEON also manages the observatory information such as lake, dam, floodgate, and weather. The accumulated observation and analyzed results are used to improve the water quality index of the observatories and encourage the ecologists' cooperation.

A Study on development of Resourse - saving site Planning techniques based on utilization of Ecosystem - Focused on Housing site - (생태계를 이용한 자원절약형 단지계획기법 개발에 관한 연구 - 주거단지를 중심으로-)

  • 이영무
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.2
    • /
    • pp.111-125
    • /
    • 1990
  • Korea is a nation with poor natural resources. There is a greats need to save resources that are running out in fast face. The purpose of this thesis is to bind the means to save rosources in housing site, especially in highrise apartment. The reason why the high-rise apartments are chosen as a case is 7hat the high-rise is becoming the major form of dwelling in most urban areas. As a tool of saving the ecological way is chosen because ecological energy is free, clean and unlimited. The resources to be saved are divided into two categories, namely energy and non - energy resources as water, land and food. The contents of the thesis are comprised of 4 chapters. The early chaspters are devoted to the understanding of the ecosystem and problems of current energy consumption in the apartment. It is fellowed by the introduction of the hypothesis that can possibly save reouruces. The hypothesis are then transformed into the actual theories through verification, to be established as the new techniques of the site planning. The ecosystem is the functional relationship between the living organisms and their physical surroundings. The living organisms are the plants that produce, animals that consume and bacterias that decompose. They live in the environment which consists of the three worlds of atmosphere, hydrosphere and lithosphere. The whole system is activated by the solar energy that turns the inorganic mallet- into the living organism and back to the inorganic. It is the recycling principle of the ecosystem. The elements of ecosystem that fan be unilimited as the tools of resources -saving are the sun, wind, water, soil, plant and waste. They are unlimited sources of energy. free of pollution and cheap in price. Each of these ecological elements Provide the opportunities that can save the heating fuel, air conditioning energy, water resource, land and food. The ecological approch should be pursued actively in this age of short resources and growing pollution. In the scale of total energy consumption the housing takes the second position next to the industrial use. It is followed by the transportation which shows for less consumption than former two.

  • PDF

Planting Design of Beijing Olympic Forest Park

  • Yi-Xia, Wu;Jie, Hu;Yan, Zhang
    • Proceedings of the Korean Institute of Landscape Architecture Conference
    • /
    • 2007.10b
    • /
    • pp.38-43
    • /
    • 2007
  • Beijing Olympic Forest Park, which occupies about 680hectares, sustains a healthy ecosystem in Beijing by maintaining regional ecological systems and improving urban ecology.

  • PDF

Fish Species Compositions and the Application of Ecological Assessment Models to Bekjae Weir, Keum-River Watershed (금강 수계 백제보에서 어류의 종 특성 평가 및 생태평가모델 적용)

  • Moon, Seong-Dae;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.731-741
    • /
    • 2015
  • The objectives of study were to evaluate fish species compositions of trophic guilds and tolerance guilds and apply ecological fish assessment (EFA) models to Bekjae Weir, Keum-River Watershed. The EFA models were Stream Index of Biological Integrity (SIBI) used frequently for running water and Lentic Ecosystem Health Assessment (LEHA) used for assessments of stagnant water. The region of Bekjae Weir as a "four major river project" was originally a lotic ecosystem before the weir construction (2010, $B_{WC}$) but became more like lentic-lotic hybrid system after the construction (2011, $A_{WC}$). In the analysis of species composition and ecological bioindicator (fish), fish species with a preference of running water showed significant decreases (p < 0.05), whereas the species with a preference of stagnant water showed significant increases (p < 0.05). After the weir construction, relative abundances of tolerant species increased, and the proportion of insectivores decreased. This phenomenon indicated the changes of biotic compositions in the system by the weir construction. Applications of SIBI and LEHA models to the system showed that the two model values decreased at the same time after the weir construction ($A_{WC}$), and the region became more like lentic-lotic hybrid system, indicating the degradation of ecosystem health. The model values of SIBI were 19 and 16, respectively, in the BWC and AWC, and the health conditions were both "C-rank". In the mean time, the LEHA model analysis showed that the values was 28 in the BWC and 24 in the AWC, thus the health was turned to be "B-Rank" in the BWC and "C-Rank" in the AWC. indicating a degradation of ecological heath after the weir construction.

The Water Deer on a Road: Road-Kill Characteristics of a Nationally Abundant but Internationally Threatened Species

  • Kim, Kyungmin;Seo, Hyunjin;Woo, Donggul;Park, Taejin;Song, Euigeun
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.62-68
    • /
    • 2021
  • Despite numerous efforts on reducing road-kill worldwide, the collisions have been occurring continuously. Many factors are affecting road-kill occurrences and the effect is various by species. We investigated Hydropotes inermis argyropus road-kill characteristics on the national highway. We examined 9,099 H. i. argyropus road-kill points with distance to the gaps on road (interchange and intersection) and distance to six natural land-cover types as explanatory variables. We also examined the number of road-kill occurrences according to temporal variation using chi-square test with 9,658 events. In general, H. i. argyropus road-kill location tended to occur close to the gaps on road, agricultural lands and forests. The average distance from road-kill to the gap was 694.7 m and 78.6% of the collisions were occurred within 1 km from the gaps. In addition, Kruskal-Wallis test showed the distance between road-kill points and each land cover and the gaps was significantly different. The temporal analyses showed that the differences of the H. i. argyropus road-kill frequency are significant in both month and season. Our results implies H. i. argyropus road-kill location tended to occur close to the gaps on road, agricultural lands and forests in general, especially during May and June, according to their seasonal behavior. Thus, we suggest there is a need of concentrated management on the roads with specific characteristics for both wildlife and human safety.

Strategic Diagnosis on the Dynamics of the Regional Technology Commercialization Ecosystem (기술사업화 생태계의 동태성에 대한 전략적 진단)

  • Choi, Nam-Hee
    • Korean System Dynamics Review
    • /
    • v.17 no.3
    • /
    • pp.145-173
    • /
    • 2016
  • This study aims to develop strategic diagnosis framework of performance by identifying and analysing the dynamics of the technology commercialization ecosystem in innovative region. To achieve the purpose of this study, the systems thinking approach is used. The systems thinking approach connects feedback structure and behavior more explicitly to diagnosis vicious feedback loop in the regional technology commercialization ecosystem. In terms of an ecological point of view, it will be possible to explore dominant feedback structure and find leverages to overcome the limitations of regional technology commercialization performance. The diagnosis of reenforcing and balancing feedback structure is based on the statistical analysis of the survey data which has been collected in a cluster random sampling method, targeting on the 200 firm located in the Pangyo and Daeduk region. The results from this research showed that the regional technology commercialization ecosystem was immature and faced limit to the growth. An important finding of this study was that regional technology commercialization ecosystem need to activation of startups and reinforcement of virtuous feedback structures of technology commercialization market systems.

A Study on the Data Cleaning and Standardization of National Ecosystem Survey in Korea (전국자연환경조사 데이터 정제와 표준화 방안 연구)

  • Kwon, Yong-Su;Song, Kyohong;Kim, Mokyoung;Kim, Kidong
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.380-389
    • /
    • 2020
  • Research on diagnosing and predicting the response of ecosystems caused by environmental changes such as artificial disturbance and climate change is emerging as the most important issue of biodiversity and ecosystem researches. This study aims to clean, standardize, and provide the results of National Ecosystem Survey which should be considered fundamentally in diagnosing and predicting ecosystem changes in the form of dataset. To refine and clean the dataset we developed a simple verification program based on the fifth National Ecosystem Survey Guideline and applied that program to the data from the second (1997~2005), third (2006~2013) and fourth (2014~2018) National Ecosystem Survey. Data quality control processes were implemented including (1) standardization of terminology, (2) similar data table integration, (3) unnecessary attribute and error elimination, (4) unification of different input items, (5) data arrangement in codes, and (6) code mapping for input items. These approaches and methods are the first attempt propose an option for ecological data standardization in Korea. The standardized dataset of National Ecosystem Survey in Korea will be easily accessible, reusable for both researchers and public. In addition, we expect it will contribute to the establishment of diverse environmental policies concerning environmental assessments, habitat conservation, prediction of endangered species distribution and ecological risks due to climate change. The dataset through this study is open freely online via EcoBank (nie-ecobank.kr) which is the first ecological information portal system in Korea developed by National Institute of Ecology.

An Analysis of Ecosystem Service's trade-off through Systems Thinking (시스템 사고를 통한 생태계서비스의 trade-off 관계 고찰)

  • Ham, Eun Kyung;Kim, Min;Chon, Jinhyung
    • Korean System Dynamics Review
    • /
    • v.16 no.2
    • /
    • pp.75-100
    • /
    • 2015
  • The purpose of this study is to analyze causation of Ecosystem service's trade-off(ES trade-off) and to establish baseline data for wise spatial planning and management. In order to understand why and how ES trade-off occurs, systems thinking and causal loops were employed. The causal loop of ecosystem service creation cycle includes profits quantification process, decision making process, spatial planning and management process, and ecosystem services creation process. The profits quantification process has a limitation that all ecosystem service categories were not included in profits quantification, because quantification method for cultural services is insufficient. These problems led to unequal discussion opportunity in decision making process. ES trade-off occurs through transition of ecosystem function in spatial scale and temporal scale. In spatial scale, land-use variation and resource-use variation contribute to change an ecosystem function for different ES category by spatial planning and management. In temporal scale, a change of an ecosystem function for different ES category is influenced by ecological succession, seasonal change and land cover variation, which are parameter from environmental features. This study presented that spatial planning and management should ecosystem service assessment in order to enhance balanced ecosystem services.