• 제목/요약/키워드: Ecophysiological response

검색결과 6건 처리시간 0.02초

Ecophysiological Changes in a Cold Tolerant Transgenic Tobacco Plant Containing a Zinc Finger Protein (PIF1) Gene

  • Yun, Sung-Chul;Kwon, Hawk-Bin
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.389-394
    • /
    • 2008
  • The ecophysiological changes occurring upon cold stress were studied using cold tolerant transgenic and wild-type tobacco plants. In a previous study, cold tolerance in tobacco was induced by the introduction of a gene encoding the zinc finger transcription factor, PIF1. Gas-exchange measurements including net photosynthesis and stomatal conductance were performed prior to, in the middle of, and after a cold-stress treatment of $1{\pm}2^{\circ}C$ for 96 h in each of the four seasons. In both transgenic and wild-type plants, gas-exchange parameters were severely decreased in the middle of the cold treatment, but had recovered after 2-3 h of adaptation in a greenhouse. Most t-test comparisons on gas-exchange measurements between the two plant types did not show statistical significance. Wild-type plants had slightly more water-soaked damage on the leaves than the transgenic plants. A light-response curve did not show any differences between the two plant types. However, the curve for assimilation-internal $CO_2$ in wild-type plants showed a much higher slope than that of the PIF1 transgenic plants. This means that the wild-type plant is more capable of regenerating Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and has greater electron transport capacity. In conclusion, cold-resistant transgenic tobacco plants demonstrated a better recovery of net photosynthesis and stomatal conductance after cold-stress treatment compared to wild-type plants, but the ecophysiological recoveries of the transgenic plants were not statistically significant.

Ecophysiological characteristics of Rosa rugosa under different environmental factors

  • Young-Been Kim;Sung-Hwan Yim;Young-Seok Sim;Yeon-Sik Choo
    • Journal of Ecology and Environment
    • /
    • 제47권3호
    • /
    • pp.85-102
    • /
    • 2023
  • Background: Ecophysiological characteristics of Rosa rugosa were analyzed under different environmental factors from May to October 2022. Photosynthesis, chlorophyll fluorescence, chlorophyll content, leaf water content (LWC), osmolality, carbohydrate content, and total ion content were measured to compare the physiological characteristics of R. rugosa at two study sites (i.e., in large pots and in the Goraebul coastal sand dune area). Results: When R. rugosa was exposed to high temperatures, photosynthetic parameters including net photosynthetic rate (PN) and stomatal conductance (gs) in both experiment areas declined. In addition, severe photoinhibition occurs when R. rugosa is continuously exposed to high photosynthetically active radiation (PAR), and because of this, relatively low Y(II) (i.e., the quantum yield of photochemical energy conversion in photosystem II [PSII]) and high Y(NO) (i.e., the quantum yield of non-regulated, non-photochemical energy loss in PSII) in the R. rugosa of the pot were observed. As the high Y(NPQ) (i.e., the quantum yield of regulated non-photochemical energy loss in PSII) of R. rugosa in the coastal sand dune, they dissipated the excessed photon energy through the non-photochemical quenching (NPQ) mechanism when they were exposed to relatively low PAR and low temperature. Rosa rugosa in the coastal sand dune has higher chlorophyll a and carotenoid content. The high chlorophyll a + b and low chlorophyll a/b ratios seemed to optimize light absorption in response to low PAR. High carotenoid content played an important role in NPQ. As a part of the osmotic regulation in response to low LWCs, R. rugosa exposed to high temperatures and continuously high PAR used soluble carbohydrates and ions to maintain high osmolality. Conclusions: We found that Fv/Fm was lower in the potted plants than in the coastal sand dune plants, indicating the vulnerability of R. rugosa to high temperatures and PAR levels. We expect that the suitable habitat range for R. rugosa will shrink and move to north under climate change conditions.

Tolerance of Several Woody Plants to Sulphur Dioxide

  • Hwangbo, Jun-Kwon;Lee, Chang-Seok;Kim, Joon-Ho
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.337-340
    • /
    • 2000
  • The photosynthetic and stomatal responses of several woody plants (Powlonia coreana, Firmiana simplex, Quercus acutissima Q. variabilis and Q. serrata) to SO$_2$ were investigated in order to understand their ecophysiological tolerance to $SO_2$ Of the plants, P, coreana showed the largest reduction in its photosynthesis in response to exposure of 0.4 ppm $SO_2$ for 20 h. Fumigation of 0.7 ppm $SO_2$ for 20 h caused complete leaf necrosis of P. coreana and f simplex, which made them unavailable for the measurement of photosynthesis. Q. variabilis exhibited the smallest reduction in photosynthesis following exposure of 0.7 ppm $SO_2$ for 20 h. Both stomatal- and non-stomatal inhibition of the plants by $SO_2$ were determined according to equations by lkeda et at. (1992). When exposed to 0.4 ppm $SO_2$ for 20 h, F. simplex and P. coreana showed the lowest stomatal and non-stomatal inhibition, respectively, while Q. variabilis and Q. serrata exhibited the lowest stomatal and non-stomatal inhibition, respectively, in response to 0.7 ppm $SO_2$ for 20 h. The data are discussed with regard to resistance mechanisms of other plants to $SO_2$ exposure and implications for restoration of declined Korean forests.

  • PDF

광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(VII) - 기공증산, 수분이용효율, 그리고 엽육세포간극 CO2 농도의 일변화 - (Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves (VII) - Daily Changes of Stomatal Transpiration, Water Use Efficiency, and Intercellular (Ci) CO2 Concentration versus Atmosphere CO2 Concentration (Ca) Ratio (Ci /Ca) -)

  • 한상섭;전두식;심주석;전성렬
    • Journal of Forest and Environmental Science
    • /
    • 제23권1호
    • /
    • pp.29-33
    • /
    • 2007
  • 이 연구는 음나무의 생장에 대한 생리 생태적 특성을 측정하여 조림목의 적지환경을 구명하고자 하는 일련의 연구이다. 본 측정에서는 잎의 기공증산속도의 일변화, 수분이용효율의 일변화, 수분포텐셜의 일변화, 그리고 세포간극의 $CO_2$ 농도 일변화 등을 측정, 고찰하였다. 그 결과를 요약하면 다음과 같다. 1) 기공증산속도의 일변화는 오전 10시경이 가장 높았으며, 16시를 기점으로 기공증산속도는 빠르게 감소하였다. 2) 수분이용효율의 일변화는 오전 8시경에 최대치를 보였고, 그 후 수분포텐셜의 감소와 함께 정오까지 빠르게 감소하였다가 회복한 후 17시 이후부터는 급격한 감소를 보였다. 3) 세포간극의 $CO_2$ 농도($C_i/C_a$ 비율)의 일변화는 오전 9시까지 빠르게 감소하였고, 그 후 16시까지는 큰 변화 없이 안정한 값을 유지하였으며, 16시 이후부터는 다시 빠르게 증가하였다. $C_i/C_a$ 비율의 일변화는 수분포텐셜의 일변화와 거의 유사한 경향을 보였다. 결과적으로 산지에 식재된 음나무 잎의 기공증산, 수분이용효율, 수분포텐셜이 높은 오전에 가장 증가하고, 오후부터 급격한 감소를 나타냈다.

  • PDF

CO2농도와 온도증가에 따른 인삼의 생육 및 생리.생태학적 반응 연구 (Effect of Elevated CO2 Concentration and Temperature on the Growth and Ecophysiological Responses of Ginseng (Panax ginseng C. A. Meyer))

  • 이경미;김해란;임훈;유영한
    • 한국작물학회지
    • /
    • 제57권2호
    • /
    • pp.106-112
    • /
    • 2012
  • 본 연구는 $CO_2$농도와 온도가 상승함에 따라 인삼의 생육반응 및 광합성 특성의 변화를 알아보기 위해 실험하였다. 유리 온실 안에 대조구(대기중 $CO_2$ 농도)와 $CO_2$ + 온도상승구(750-800 ppm, $2^{\circ}C$ 상승)로 나누어 비교하였으며 다음과 같다. 1. 인삼의 개엽율은 1년생 인삼을 이식한 후 1주일 이후인 4월 6일에 $CO_2$ + 온도상승구의 개엽율이 대조구보다 더 높았다. 그러나 최종 개엽율은 $CO_2$ + 온도상승구간 차이가 없었다. 2. 꽃이 나오는 시기는 대조구보다 $CO_2$ + 온도상승구가 3일 빨랐고, 열매관찰시기와 열매 성숙시기는 대조구와 $CO_2$ + 온도상승구간 차이가 없었다. 3. 인삼의 줄기길이는 대조구보다 $CO_2$ + 온도상승구에서 길었고, 잎수는 대조구보다 $CO_2$ + 온도상승구에서 많았다. 4. 지하부 생량무게는 대조구와 $CO_2$ + 온도상승구간 차이가 없었다. 5. 광합성은 모두 대조구보다 $CO_2$ + 온도상승구가 높았다. 대조구 내에서는 년도별 광합성이 차이가 있었다. 하지만 $CO_2$ + 온도상승구에는 1년생과 2년생 간 차이가 없었다. 6. 증산률은 대조구와 $CO_2$ + 온도상승구에서 모두 년생간 차이가 있었다. 1년생은 대조구보다 $CO_2$ + 온도상승구가 높았고, 2년생은 대조구와 $CO_2$ + 온도상승구간 차이가 없었다. 7. 수분이용효율은 대조구와 $CO_2$ + 온도상승구에서 모두 1년생과 2년생간 차이가 있었다. 1년생은 대조구와 $CO_2$ + 온도상승구간 차이가 없었고, 2년생은 대조구 보다 $CO_2$ + 온도상승구가 높았다. 이상으로 볼 때 지구온난화는 인삼의 생육과 생리 생태학적 반응에 다소 긍정적인 영향을 준다.

The effects of LEDs and duty ratio on the growth and physiological responses of Silene capitata Kom., endangered plant, in a plant factory

  • Park, Jae-Hoon;Lee, Eung-Pill;Han, Young-Sub;Lee, Soo-In;Cho, Kyu-Tae;Hong, Yong-Sik;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • 제42권4호
    • /
    • pp.174-182
    • /
    • 2018
  • Background: In this study, we observed their growth and physiological responses using a variety of duty ratio under the mixed light using red, blue, and white lights. The red+blue mixed light was treated with 95%, 90%, 85%, 80%, and 75% duty ratios and red+blue+white mixed light with 85% and 70% duty ratios. We examined the width and length of leaves, total number of leaves, and number of shoots to examine their growth responses. The physiological responses were studied by measuring their photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency, chlorophyll content, and fluorescence ($F_o$, $F_m$, and $F_v/F_m$). Results: We found that lower duty ratio caused the length and width of the leaves to grow longer under red+blue mixed light but that it did not cause any difference in the red+blue+white mixed light condition. In addition, there was no difference in the number of leaves and shoots among all treatments. In the red+blue mixed light condition, the photosynthetic rate was no difference, but both transpiration rate and stomatal conductance were the highest at 95% duty ratio than in other ratios. Water use efficiency pattern was similar to that of photosynthetic rate; water use efficiency was no difference. Chlorophyll content was the highest at 95% duty ratios, and it was the least at 90%, 85%, and 75% duty ratio. $F_o$ and $F_m$ values were relatively high at 85% and 80% duty ratio and low at 90% duty ratio while $F_v/F_m$ showed no difference. Conclusions: Under the red+blue+white mixed light, all physiological items showed no difference between 70 and 85% treatments. But, photosynthetic rate, water use efficiency, chlorophyll content, and $F_v/F_m$ were relatively greater in the red+blue+white mixed light than in the red+blue mixed light. Therefore, red+blue+white mixed light treated with 70% duty ratio could lessen the environmental stress and save more power when cultivating Silene capitata in a plant factory.