• Title/Summary/Keyword: Economizer

Search Result 54, Processing Time 0.024 seconds

A study on temperature characteristic of the gases supplied to SOFC system by utilizing the ship exhaust gas (선박 배기가스 활용에 따른 SOFC 시스템 공급가스의 온도특성에 관한 연구)

  • Park, Sang-Kyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.822-828
    • /
    • 2013
  • Since the operating temperature of Solid Oxide Fuel Cell (SOFC) is high, the heat management of the gases supplied to fuel cell system is important. In this paper, the temperature characteristic of the gases supplied to the anode and the cathode of the fuel cell is studied in case of utilizing the waste heat contained in the ship exhaust gas as a heat source to heat up the fuel, gas and water supplied to a 500kW SOFC system for a ship power. For the fuel cell system proposed in this paper, the temperature of gases supplied to the anode and the cathode was the highest temperature at 963K when the exhaust gas of the fuel cell was utilized as the heat source for gases supplied to fuel cell system instead of utilizing the ship exhaust gas. In addition, the engine power did not effect on the temperature of gases supplied to the fuel cell stack.

Evaluation of Performance and Economics of Organic Rankine Cycle Integrated into Combined Cycle Cogeneration Plant (복합열병합발전소에 적용된 유기랭킨사이클의 성능 및 경제성 평가)

  • Kim, In Seop;Kim, Chang Min;Kim, Tong Seop;Lee, Jong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2017
  • This study aimed to analyze organic Rankine cycle(ORC) which recovers discarded heat from a gas turbine based combined cycle cogeneration(CC-cogen) plant in terms of both performance and economics. The nominal electric power of the CC-cogen plant is around $120MW_e$, and heat for district heating is $153MW_{th}$. The major purpose of this study is to compare various options in selecting heat source of the ORC. Three heat sources were compared. Case 1 uses the exhaust gas from the HRSG, which is purely wasted to environment in normal plant operation without ORC. Case 2 also uses the exhaust gas from the HRSG. On the other hand, in this case, the DH economizer, which is located at the end of the HRSG, does not operate. Case 3 generates power using some of the district heating water which is supplied to consumers. The estimated ORC power generation ranges between 0.3 to 2.3% of the power generation capacity of the CC-cogen plant. Overall, Case 3 is evaluated to be better than other two options in terms of system design flexibility and power generation capacity.

Application of CFD Methods to Improve Performance of Denitrification Facility (탈질 설비의 성능 개선을 위한 CFD 기법 적용에 관한 연구)

  • Min-Kyu Kim;Hee-Taeg Chung
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.305-312
    • /
    • 2023
  • Due to the strengthening of environmental requirements, aging denitrification facilities need to improve their performance. The present study aims to suggest the possibility of improving performance using computational analysis techniques. This involved modifying both the geometric design and the operating conditions, including the flow path shape of the equipment such as the inlet guide vane and the curved diffusing part, and the flow control of the ammonia injection nozzle. The conditions presented in this study were compared with existing operating conditions in terms of the flow uniformity, the NH3/NO molar ratio of the mixed gas flowing into the catalyst layer, and the total pressure drop of the facility. The flow field applied in the computational analysis ranged from the outlet of the economizer in the combustion furnace to the inlet of the air preheater, the full domain of the denitrification facility. The performances were derived by solving the flow fields using ANSYS-Fluent and the injection amount of ammonia was adjusted for each nozzle using Design Xplorer. Compared to the denitrification performances of the equipment currently in operation, the conditions proposed in this study showed an improvement in the flow uniformity and NH3/NO composition ratio by 45.1% and 8.7%, respectively, but the total pressure drop increased by 1.24%.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2015 (설비공학회 분야의 최근 연구 동향 : 2015년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.256-268
    • /
    • 2016
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2015. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering were carried out in the areas of flow, heat and mass transfer, cooling and heating, and air-conditioning, the renewable energy system and the flow inside building rooms. Research issues dealing with air-conditioning machines and fire and exhausting smoke were reduced. CFD seems to be spreading to more research areas. (2) Research works on heat transfer area were carried out in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the economic analysis of GHG emission, micro channel heat exchanger, effect of rib angle on thermal performance, the airside performance of fin-and-tube heat exchangers, theoretical analysis of a rotary heat exchanger, heat exchanger in a cryogenic environment, the performance of a cross-flow-type, indirect evaporative cooler made of paper/plastic film. In the area of pool boiling and condensing, the bubble jet loop heat pipe was studied. In the area of industrial heat exchangers, researches were performed on fin-tube heat exchanger, KSTAR PFC and vacuum vessel at baking phase, the performance of small-sized dehumidification rotor, design of gas-injection port of an asymmetric scroll compressor, effect of slot discharge-angle change on exhaust efficiency of range hood system with air curtain. (3) In the field of refrigeration, various studies were carried in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, a cold-climate heat pump system, $CO_2$ cascade systems, ejector cycles and a PCM-based continuous heating system were investigated. In the alternative refrigeration/energy system category, a polymer adsorption heat pump, an alcohol absorption heat pump and a desiccant-based hybrid refrigeration system were investigated. In the system control category, turbo-refrigerator capacity controls and an absorption chiller fault diagnostics were investigated. (4) In building mechanical system research fields, eighteen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the user and location awareness technology applied dimming lighting control system, the lighting performance evaluation for light-shelves, the improvement evaluation of air quality through analysis of ventilation efficiency and the evaluation of airtightness of sliding and LS window systems. The subjects of building energy were worked on the energy saving estimation of existing buildings, the developing model to predict heating energy usage in domestic city area and the performance evaluation of cooling applied with economizer control. The studies were also performed related to the experimental measurement of weight variation and thermal conductivity in polyurethane foam, the development of flame spread prevention system for sandwich panels, the utilization of heat from waste-incineration facility in large-scale horticultural facilities.