• Title/Summary/Keyword: Ecological simulation

Search Result 343, Processing Time 0.04 seconds

Water Quality Simulation of the Reservoir Using Ecological Model

  • Kim, Dong-Myung;Suk, Ji-Won;Kim, Sun-Young;Shin, Sang-Ik;Roh, Kyong-Joon
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1755-1762
    • /
    • 2014
  • Water quality of the Koejong-reservoir was estimated by using the ecological model to evaluate the effects of industrial sewage discharge. State variables consist of POC, DOC, phytoplankton, DIP, DIN, DO and COD. Initial conditions for the compartment are applied to the model based on the observed results. The reproducibility was found to be satisfactory with the relative error ranging between the calculated value and the observed value. Water quality simulation was conducted by applying additional industrial sewage discharge into the Koejong-reservoir. The concentrations of COD, Chl.a, DIP and COD showed fluctuations of a narrow range. The increment percentages of Chl.a, COD and DIP were 26.6%, 20.2% and 18.2%, respectively. In the case of DO, the concentration decreased 4.8%.

A Study on the Analysis of the Water Quantity of the Rainwater Detention System based on the Planning Simulation in the Wonheungs' ecological park (모의실험에 의한 청주S(3)택지개발지구 원흥이생태공원일대 우수저류시설의 빗물저류효과 분석 연구)

  • Kim, Gi-Soo;Lee, Tae-Gu;Hwang, Hee-Yeun
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.25-30
    • /
    • 2007
  • The purpose of this research is to analyze the water quantity of the rainwater detention system based on the Planning Simulation in Residential Areas. The contents of this research consists of two main parts. The first part is to calculate the supply water quantity of the rainwater detention system and the demand water quantity of the Wonheungs' ecological park. The second part is to analyze the difference between demand and supply of water quantity, based on the Planning Simulation, in the rainwater detention system. This research will contribute to the establishment of the environment-friendly site planning methods which increase the quality of residential environment in apartment housing.

Ecological flow calculations and evaluation techniques: Past, present, and future

  • LIU Yang;Wang Fang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.28-28
    • /
    • 2023
  • Most countries worldwide are finding it difficult to make decisions regarding the utilization of water resources and the ecological flow protection of rivers because of serious water shortages and global climate warming. To overcome this difficulty, accurate ecological flow processes and protected ecological objectives are required. Since the introduction of the concept, ecological flow calculations have been developed for more than 60 years. This technical development has always been dominated by countries such as the United States, Australia, and the United Kingdom. The technical applications, however, vary substantially worldwide. Some countries, for instance, did not readjust the method because of a lack of understanding of the ecological effect or because they failed to achieve elaborate scheduling. Mostly, readjustments were not made because the users could not make their choices from among numerous methods for ecological flow. This paper presents three research results based on a systematic review of 240 methods with clear connotation boundaries. First, the ecological flow algorithm was developed along with the scientific and technological progress in the river ecosystem theory, ecohydrological relationship, and characterization and simulation of hydrological and hydrodynamic processes. In addition, the basis of the method has evolved from the hydrological process of the ecosystem, hydraulics-habitat conditions, and social development interference to whole ecosystem simulation. Second, 240 methods were classified into 50 sub-categories to evaluate their advantages and disadvantages according to the ecological flow algorithms of hydrology, hydraulics, habitat, and other comprehensive methods. According to this evaluation, 60% of the methods were not suitable for further application, including the method based on the percentage of natural runoff. Furthermore, the applicability of the remaining methods was presented according to the evaluation based on the aspects of allocation of water resources, water conservancy project scheduling, and river ecological evaluation. Third, In the future, most developing countries should strengthen the guarantee of high-standard ecological flow via a coordination mechanism for the ecological flow guarantee established under a sustainable framework or via an ecological protection pattern at the national level according to the national system. Concurrently, a reliable ecological flow demand process should also be established on the basis of detailed investigation and research on the relationship between river habitats, ecological hydrology, and ecological hydraulics. This will ensure that the real-time evaluation of ecological flow forces the water conservancy project scheduling and accurate allocation of water.

  • PDF

Impact on Fish Community by Restoration of Ecological Waterway using Physical Habitat Simulation (물리서식처 분석을 통한 생태 물길 복원이 다양한 군집종에 미치는 영향)

  • Choi, Heung Sik;Choi, Jonggeun;Choi, Byungwoong
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • This study performed the impact of ecological waterway on fish community in a reach of the Dal River, Korea. Fish monitoring revealed that 9 fish species are dominant, namely Zacco platypus, Coreoleuciscus splendidus, Zacco koreanus, Pungtungia herzi, Acheilognathus yamatsutae, Rhinogobius brunneus, Tanakia signifer, Gobiobotia macrocephala, and Pseudopungtungia tenuicorpus, and account for 95% of the total fish community. The River2D model was used for the computation of the flow and the HSI model for the habitat simulation. The restoration of the waterway performed through the small dam removal, the formation of the pool-riffle structure, and the change of the bed elevation and width. Simulation results indicated that the restoration of the ecological waterway effects significantly increased by about 16% for the WUA (Weighted Usable Area) of the total fish community in optimal ecological flow conditions ($Q=7.0m^3/s$). The restoration of the ecological waterway is more advantageous to fish community.

Revolution of nuclear energy efficiency, economic complexity, air transportation and industrial improvement on environmental footprint cost: A novel dynamic simulation approach

  • Ali, Shahid;Jiang, Junfeng;Hassan, Syed Tauseef;Shah, Ashfaq Ahmad
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3682-3694
    • /
    • 2022
  • The expansion of a country's ecological footprint generates resources for economic development. China's import bill and carbon footprint can be reduced by investing in green transportation and energy technologies. A sustainable environment depends on the cessation of climate change; the current study investigates nuclear energy efficiency, economic complexity, air transportation, and industrial improvement for reducing environmental footprint. Using data spanning the years 1983-2016, the dynamic autoregressive distributed lag simulation method has demonstrated the short- and long-term variability in the impact of regressors on the ecological footprint. The study findings revealed that economic complexity in China had been found to have a statistically significant impact on the country's ecological footprint. Moreover, the industrial improvement process is helpful for the ecological footprint in China. In the short term, air travel has a negative impact on the ecological footprint, but this effect diminishes over time. Additionally, energy innovation is negative and substantial both in the short and long run, thus demonstrating its positive role in reducing the ecological footprint. Policy implications can be extracted from a wide range of issues, including economic complexity, industrial improvement, air transportation, energy innovation, and ecological impact to achieve sustainable goals.

Numerical Simulation for the Prediction of PAHs in Jinhae Bay using EMT-3D Model (EMT-3D 모델을 이용한 진해만 PAHs의 거동 예측 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The behavior prediction of PAHs in Jinhae Bay using a three-dimensional ecological model(EMT-3D) was examined. A three-dimensional ecological model(EMT-3D) was applied to the simulation of PAHs behaviors in Jinhae Bay of Korea. The computed results of simulation were in good agreement with the observed values. The result of sensitivity analysis showed that photolysis coefficient and extinction coefficient were important factors in the variation of dissolved PAHs, and POC partition coefficient was important factor in the variation of PAHs in particulate organic matter. In the case of PAHs in phytoplankton, bioconcentration factor of plankton was the most significant and the most effective in all. In simulations of 30%, 50% and 80% reduction in total loads of PAHs, the concentrations of dissolved PAHs were shown to be lower than 24 ng/L, 20 ng/L and 16 ng/L, respectively.

Preliminary Diagnosis for Pulsing Simulation of Low Trophic Ecosystem by Environmental Changes in Coastal Area (연안해역의 환경변화에 따른 저차 생태계 Pulsing Simulation 예비 진단)

  • Lee, Dae-In
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.461-468
    • /
    • 2012
  • In general, long-term changes of ecological factors take a pulse form in which they interact with other factors and go through a repeated increasing and decreasing cycle. The coupling of the two approaches the grid model and the box model in ecological modeling can lead to an in-depth understanding of the environment. The study analyzes temporal variations of major storages with an energy system model that formulizes effectively the relationships among nutrients, phytoplankton, and zooplankton in the Yellow Sea and the East China Sea. An increase of light intensity and standing stock of nutrient increase the magnitude and frequency of pulsing. Also, an immense reduction of nutrient concentration can cause extinction of the pulsing and bring about a steady state. It is concluded that the nutrient loads in freshwater discharge from the Yangtze affect the cycles of major ecological components as well as water quality variables and play an important role in the marine ecosystem.

A Study on Ecological Interface Design for Navy Ship's Radar Display

  • Park, Young-Hwan;Myung, Ro-Hae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.353-362
    • /
    • 2012
  • Objective: The aim of this study is developing the navigation radar display of navy ship with ecological interface design (EID) framework. Background: Navy ship radar operator must perform navigation support tasks by monitoring the complex and diverse information presented on the radar display. Current radar display is limited in effective navigation aid and response to an unusual state immediately. It is necessary to develop an effective radar display. Method: Ten navy radar operators performed a series of trials in a low-fidelity radar simulation in which they attempted to solve the problems of current navigation situation. Results: The result demonstrated that the ecological interface's performance was better than the existing radar display on performance time and subjective mental workload. Conclusion: This study expand EID study field to navy ship radar display and confirm ecological display is better than existing radar display in performance time, subjective mental work load. Application: The result of this study may help to improve navy ship navigation radar display currently in use.

Application of ecological interface design in nuclear power plant (NPP) operator support system

  • Anokhin, Alexey;Ivkin, Alexey;Dorokhovich, Sergey
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.619-626
    • /
    • 2018
  • Most publications confirm that an ecological interface is a very efficient tool to supporting operators in recognition of complex and unusual situations and in decision-making. The present article describes the experience of implementation of an ecological interface concept for visualization of material balance in a drum separator of RBMK-type NPPs. Functional analysis of the domain area was carried out and revealed main factors and contributors to the balance. The proposed ecological display was designed to facilitate execution of the most complicated cognitive operations, such as comparison, summarizing, prediction, etc. The experimental series carried out at NPPs demonstrated considerable reduction of operators' mental load, time of reaction, and error rate.