• Title/Summary/Keyword: Ecological river

Search Result 948, Processing Time 0.021 seconds

A Study on the Setting Criteria and Management Area for the National Ecological Network (광역생태축 구축을 위한 기준 및 관리지역 설정 연구)

  • Jeon, Seong-Woo;Chun, Joung-Yoon;Seong, Hyeon-Chan;Song, Won-Kyong;Park, Ji-Hee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.154-171
    • /
    • 2010
  • This study was performed to show criteria of a National Ecological Network (NEN) for South Korea and it was a part of a study of ecological network for broad areas on national land showed by Ministry of Environment of Korea. After 1970s, many european countries presented methods and criteria not on individual protected area but on networking among many habitats. The PEEN (Pan European Ecological Network) and NATURA 2000 are results of those. In South Korea, concepts and mapping metheods of ecological network was studied but those were not applied to the whole national land because the equality and local specialities were not reflected. So, in this study, we presented the criteria composed of forest, river, wildlife and coastal evaluation items in conservation ecology and showed the mapping method which can applied to the national land. After the evaluation on land area which composed of forest, river and wildlife axis. Core areas were $30,616km^2$, buffer zone were $21,870km^2$ and each accounted for 31% and 22% of the national land. Except for Taebaeck-Gangwon region, whole region's core areas were accounted for 20~30% of it and buffer zone were accounted for 20~25% of it, so these can be applied to the national land with equality and local specialities. Forest axis and river axis were clearly linear and connected, but the wildlife axis was dispersed in point form. Therefore, to apply the NEN, a detailed habitat map is important and the interconnected implementation of forest, river, wildlife, and coastal axis is required.

A Study on the Biotope Planning of Dong-gang River Watershed in Ecological and Landscape Conservation Area (동강 생태·경관보전지역 내 비오톱(Biotope) 조성 계획)

  • Park, Eun Kyoung;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2013
  • This study was conducted to make a biotop planning and construct 3 types of biotop by each site conditions. Three sites of different types in ecological and scenery conservation area of the Dong-gang river were selected by expert brain-storming process and constructed terrestrial biotops and aquatic biotops. Targets of 3 sites were set up such as constructing a habitat for Kaloula borealis and an ecological education place, building a terrestrial biotopes and monitoring the natural vegetation succession, and constructing a habitat for Luciola unmunsana Doi. The study results can be applied hereafter to ecological restoration projects, after construction of habitat, the priority should be prepare measures of monitoring and maintenance, hereafter continuous study on ecological restoration should be performed actively through construction of biotope and wild animals and plants habitat.

Ecological Planning for the Preparation of an Eco-Road on the Pyungtak-Eumsung Highway (평택-음성간 고속도로의 에코로드 조성을 위한 환경생태계획)

  • 강현경;민권식;장종수;한봉호
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.32-42
    • /
    • 2004
  • This study aims at establishing an ecological planning for road construction. which is considered to be a main cause of damage to the natural environment in Korea. This study focuses on the Pyungtak-Eumsung Highway development project. It considers the ecological factors and status of the site and its surrounding area. The study site is a four-way highway with a width of 23.4m and a length of 5.7km that spans from Hyungok-ri, Anseong City, Kyeonggi Province to Jukhyun-ri, Jincheon-gun, Chungbuk Province. The objective of the plan is "the establishment of an eco-road in harmony with nature." The plan is divided into five detailed goals: 1) restoration of river morphology and ecosystem through ecological planning; 2) establishment of wet biotopes; 3) construction of ecological corridors; 4) restoration of damaged forest ecosystems; and 5) ecological restoration of the roadside slopes that are linked with the surrounding forest. A master plan has been developed based on the detailed goals. The master plan involves: 1) establishment of a natural river, wet biotopes, and ecological corridors that facilitate the movement of amphibians, wild fowls, mammalians and fish; 2) development of a planting plan for the visitor center, the tunnel entrance, and soundproof banks; and 3) the presentation of a planting model for restoring roadside slopes that are connected to the surrounding forest. The eco-road plan needs to entail ecological conservation and restoration plans. In addition, a monitoring plan for ecological corridors and habitats should be included in the comprehensive plans, along with the continuous development of environmentally friendly technologies.

Estimation of Ecological Instream Flow Considering the River Characteristics and Fish Habitat in the Downstream of Yongdam Reservoir (용담댐 하류의 어류서식처를 고려한 생태학적 유지유량 산정)

  • Jang, Chang-Lae;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.374-381
    • /
    • 2009
  • Ecological instream flow was quantitatively calculated based on the river characteristics and fish habitat in the downstream of Yongdam Reservoir. The river bed and width did not change from 1988 before the am construction to 2004 after the dam construction, but the bed sediment size was attenuated a little in 2004. According to result that investigate fishes, 4 family 11 species including Acheilognathus koreensis were collected. Among them, Zacceo koreanus of cyprinidae was dominant, and Coreoleuciscus splendidus did sub-dominant. The habitat suitability indexes were estimated for two fish species Zacco koreanus and Coreoleuciscus splendidus using Physical Habitat Simulation System (PHABSIM) considering the river characteristics. In Gamdong and Daeti sites, the optimal ecological flow for Z. koreanus and C. splendidus were $13.90\sim12.60\;m^3\;s^{-1}$ and $15.50\sim11.60\;m^3\;s^{-1}$, respectively. In contrast, the optimal flow for the two species in Bunam site were $7.00\;m^3\;s^{-1}$. The ecological instream flow in the downstream of Yongdam Reservoir was between normal and high flow rate.

Emergy Evaluation of the Estuarine Areas of Yeongsan River, Seomjin River, and Han River in Korea (영산강, 섬진강, 한강 하구역의 에머지 평가)

  • Lee, Chang-Hee;Kang, Dae-Seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • An emergy concept was used to evaluate the environment and economy of the estuarine areas of Yeongsan River, Seomjin River, and Han River in Korea. The emergy evaluations clearly showed ecological and socioeconomic characteristics of the estuarine areas that act as ecological and economic centers of surrounding areas. River, tide, and rain provided most of the renewable emergy inputs to the estuarine areas with their contribution to the total emergy input less than 8%. The estuarine areas mostly relied for their operation on the purchased emergy which accounted for $92{\sim}98%$ of the total emergy input to the systems. Emergy indices such as emergy use per unit area, population carrying capacity, environmental loading ratio, and emergy sustainability index revealed that the estuarine areas of Yeongsan River, Seomjin River, and Han River are not sustainable at the current level of economic activities in the areas. The ecological economic values of the environment of the areas were in the range of $7.29{\sim}22.06$ million Em\/ha/yr. They are more than twice that for the whole country, indicating the ecological and economic importance of the eatuarine areas. It is, therefore, urgent to establish and implement estuarine management policies to protect and restore the ecological and economic potentials of the estuarine areas of Yeongsan River, Seomjin River, and Han River. Management plans for the estuarine areas should include both demand-side measures such as reduction of population and economic concentration and consideration of ecological carrying capacity in planning stages for utilization and development of the areas, and supply-side ones such as restoration of degraded ecosystems and construction of new productive ecosystems.

  • PDF

The Classification of Instream Habtats for Ecological River Restoration (생태하천복원을 위한 하도 생물서식처 유형 구분)

  • Ahn, Hong Kyu;Lee, Dong Jun;Kim, Si Nae
    • Ecology and Resilient Infrastructure
    • /
    • v.1 no.2
    • /
    • pp.82-93
    • /
    • 2014
  • In recent years, "ecological river restoration" taking into account the flood control, water utilization and environmental aspects of rivers is actively being investigated. However, it is hard to understand the inhabitation conditions of living organisms that live on the river with distinct characteristics have been fully reflected, and with the use of limited methods, it ends in uniformed composition of artificial rivers and a mere customary stream channel maintenance, resulting in frequently disturbed stream channel habitats As a fundamental study for investigating the habitats of living organisms that live on rivers, this study intends to examine each habitat type by dividing domestic rivers into sand rivers and gravel rivers depending on the nature of rivers and dividing sections of each river into central river sections and natural river sections. As a result, more diverse habitat types of organisms were found in the gravel rivers rather than in the sand rivers, and the habitat types of organisms in the central river sections where the river restoration project have been already conducted reached approximately 56.3 % of those that appeared in the natural river sections.

Estimation of River Ecological Flow in the Downstream Section of Seomjingang Dam (섬진강 댐 하류 구간에서의 하천 생태유량 산정)

  • Bae, Jeonga;Lee, Chanjoo;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • It is very important to secure sufficient river maintenance flow for the ecosystem, since the ecosystem in the downstream section of the dam is greatly affected by the stream maintenance flow from the dam. However, the amount of discharge from the Seomjingang Dam is decreasing year by year, this study estimated the ecological flow required for the downstream section of the Seomjingang Dam, which is known as the habitat of the endangered Acheilognathus somjinensis, in order to secure the river flow of the Seomjingang Dam. For this purpose, the proper discharge was calculated using the PHABSIM model, which is a hydrological survey and physical habitat simulation method, and the proper discharge of other fish species were also comprehensively reviewed. As a result of this study, the current river maintenance flow at the Seomjingang Dam partially satisfies the ecological maintenance flow including the Acheilognathus somjinensis in the downstream section of the Seomjingang Dam. However, this is recognized as the minimum discharge to maintain the ecology in the downstream section of the Seomjingang Dam, and it would be more desirable to secure larger river maintenance flow than this. This study can contribute the determination of the river maintenance flow of the Seomjingang Dam by proposing the river maintenance flow considering the fish habitat environment in the river.

Distribution Characteristics of Riparian Vegetation in the Mid and Lower Reaches of the Nakdong River, Korea (낙동강 중.하류지역의 수변 식생 분포 특성)

  • Yeo, Un-Sang;Lee, Yong-Min;Kim, Ki-Sup;Sung, Ki-June;Kang, Dae-Seok;Lee, Suk-Mo
    • Journal of Environmental Science International
    • /
    • v.17 no.2
    • /
    • pp.149-162
    • /
    • 2008
  • Aquatic and riparian vegetation of river ecosystems are very important both in ecological and management perspectives. Vegetation surveys were conducted to understand the characteristics of riparian vegetation in the mid and lower reaches of the Nakdong River, Korea. A total of 68 families and 260 species were identified at eleven survey sites. The numbers of taxa were similar to those reported in a previous survey in 1996,but the percentage of naturalized plants increased more than two times compared to that in the previous survey. Survey sites near Yangsan Bridge and Nambu Park in Yangsan showed the highest percentage of naturalized plant species. Urbanization indices of the survey sites were high at 18.8% on average. Therophytes were the most dominant plant life form at the survey sites with 39.2% of total plants identified, followed by phanerophytes (19.2%), hemicryptophytes (18.9%), aquatic plants (13.9%), cryptophytes (5.8%), and chamaephytes (3.1%). The relative composition of hemicryptophytes decreased whereas those of therophytes and chamaephytes increased compared to those in the survey in 1996. This may be due to increase in dryness of riparian soils or degradation of riparian areas. Plant compositions at sites near Jeokpo Bridge and Hwoicheon suggest that the composition and distribution of riparian vegetation are affected by land use pattern surrounding riparian areas or human accessibility to the areas.

ECOLOGICAL RESPONSE OF STREAMS IN KOREA UNDER DIFFERENT MANAGEMENT REGIMES

  • Lee Chang-Seok;Cho Yong-Chan;Shin Hyun-Cheol;Moon Jeong-Suk;Lee Byung-Cheon;Bae Yang-Seop;Byun Hwa-Geun;Yi Hoon-Bok
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.131-147
    • /
    • 2005
  • Today, a trend that tries to return the artificial space of a river to a natural one is expanding. But in Korea, which lies in the monsoon climate zone, rivers endure flood damage every year. Moreover, climatic change from global warming causes severe variations in precipitation patterns. Until recently, river restoration practices in Korea have followed partial restoration. These restorative treatments transformed artificial structures of the stream to natural ones and introduced natural vegetation by imitating natural or semi-natural streams. Treatment transformed the riparian structure and increased the diversity of micro-topography and vegetation. Furthermore, restoration recovered species composition, increased species diversity, and inhibited the establishment of exotic species. In particular, the Suip stream, which was left to its natural process for approximately 50 years, recovered its natural features almost completely through passive restoration. An urban stream, the Yangjae, and a rural stream, the Dongmoon, were restored partially by applying ecological principles. On the contrary, technological treatment applied to recover flood damage induced species composition far from the natural vegetation and decreased species diversity. Additionally, this treatment increased exotic species. The same results were found also in benthic invertebrate and fish fauna. The above-mentioned results reflect the importance of ecological considerations in river management.

  • PDF

Emergy Cost-Benefit Evaluation of the Down Stream of Nakdong River Using Environmental-Ecological Concept (환경 생태학적 개념을 이용한 낙동강 하류의 에머지 비용-편익 평가)

  • Jung, Hwa-Sook;Lee, Seog-Mo;Son, Hyeng-Sik;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.507-514
    • /
    • 2013
  • The Nakdong River being used as drinking water sources for the Busan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. This study used emergy analysis method to evaluate ecological-economics of water treatment systems of D water treatment plant (WTP) where located in the downstream of the Nakdong River. The emergy methodology is a system evaluation tool that uses energy as the common currency to compare different resources on a common basis. Emergy yield ratio (EYR) and emergy sustainability index (EmSI) of D WTP were 1.16 and 0.18, respectively. It means not resources and sustainable system but consumer goods and not sustainable system. Ratio of emergy benefit to the purchaser (EBP) shows 2.7 times higher than economic costs. To change the weak water source and situations we need to diversity water intake.