• Title/Summary/Keyword: Ecological parameters

Search Result 323, Processing Time 0.02 seconds

Prediction of Acer pictum subsp. mono Distribution using Bioclimatic Predictor Based on SSP Scenario Detailed Data (SSP 시나리오 상세화 자료 기반 생태기후지수를 활용한 고로쇠나무 분포 예측)

  • Kim, Whee-Moon;Kim, Chaeyoung;Cho, Jaepil;Hur, Jina;Song, Wonkyong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.163-173
    • /
    • 2022
  • Climate change is a key factor that greatly influences changes in the biological seasons and geographical distribution of species. In the ecological field, the BioClimatic predictor (BioClim), which is most related to the physiological characteristics of organisms, is used for vulnerability assessment. However, BioClim values are not provided other than the future period climate average values for each GCM for the Shared Socio-economic Pathways (SSPs) scenario. In this study, BioClim data suitable for domestic conditions was produced using 1 km resolution SSPs scenario detailed data produced by Rural Development Administration, and based on the data, a species distribution model was applied to mainly grow in southern, Gyeongsangbuk-do, Gangwon-do and humid regions. Appropriate habitat distributions were predicted every 30 years for the base years (1981 - 2010) and future years (2011 - 2100) of the Acer pictum subsp. mono. Acer pictum subsp. mono appearance data were collected from a total of 819 points through the national natural environment survey data. In order to improve the performance of the MaxEnt model, the parameters of the model (LQH-1.5) were optimized, and 7 detailed biolicm indices and 5 topographical indices were applied to the MaxEnt model. Drainage, Annual Precipitation (Bio12), and Slope significantly contributed to the distribution of Acer pictum subsp. mono in Korea. As a result of reflecting the growth characteristics that favor moist and fertile soil, the influence of climatic factors was not significant. Accordingly, in the base year, the suitable habitat for a high level of Acer pictum subsp. mono is 3.41% of the area of Korea, and in the near future (2011 - 2040) and far future (2071 - 2100), SSP1-2.6 accounts for 0.01% and 0.02%, gradually decreasing. However, in SSP5-8.5, it was 0.01% and 0.72%, respectively, showing a tendency to decrease in the near future compared to the base year, but to gradually increase toward the far future. This study confirms the future distribution of vegetation that is more easily adapted to climate change, and has significance as a basic study that can be used for future forest restoration of climate change-adapted species.

Microbial Influence on Soil Properties and Pollutant Reduction in a Horizontal Subsurface Flow Constructed Wetland Treating Urban Runoff (도시 강우유출수 처리 인공습지의 토양특성 및 오염물질 저감에 따른 미생물 영향 평가)

  • Chiny. C. Vispo;Miguel Enrico L. Robles;Yugyeong Oh;Haque Md Tashdedul;Lee Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.26 no.2
    • /
    • pp.168-181
    • /
    • 2024
  • Constructed wetlands (CWs) deliver a range of ecosystem services, including the removal of contaminants, sequestration and storage of carbon, and enhancement of biodiversity. These services are facilitated through hydrological and ecological processes such as infiltration, adsorption, water retention, and evapotranspiration by plants and microorganisms. This study investigated the correlations between microbial populations, soil physicochemical properties, and treatment efficiency in a horizontal subsurface flow constructed wetland (HSSF CW) treating runoff from roads and parking lots. The methods employed included storm event monitoring, water quality analysis, soil sampling, soil quality parameter analysis, and microbial analysis. The facility achieved its highest pollutant removal efficiencies during the warm season (>15℃), with rates ranging from 33% to 74% for TSS, COD, TN, TP, and specific heavy metals including Fe, Zn, and Cd. Meanwhile, the highest removal efficiency was 35% for TOC during the cold season (≤15℃). These high removal rates can be attributed to sedimentation, adsorption, precipitation, plant uptake, and microbial transformations within the CW. Soil analysis revealed that the soil from HSSF CW had a soil organic carbon content 3.3 times higher than that of soil collected from a nearby landscape. Stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in the inflow and outflow were recorded as C:N:P of 120:1.5:1 and 135.2:0.4:1, respectively, indicating an extremely low proportion of N and P compared to C, which may challenge microbial remediation efficiency. Additionally, microbial analyses indicated that the warm season was more conducive to microorganism growth, with higher abundance, richness, diversity, homogeneity, and evenness of the microbial community, as manifested in the biodiversity indices, compared to the cold season. Pollutants in stormwater runoff entering the HSSF CW fostered microbial growth, particularly for dominant phyla such as Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes, which have shown moderate to strong correlations with specific soil properties and changes in influent-effluent concentrations of water quality parameters.

A study on the ecological habitat and protection of natural Sorbus commixta forest at Mt. Seorak (설악산(雪嶽山)에 분포(分布)하는 마가목 천연림(天然林)의 생태환경(生態環境)과 보호(保護)에 관(關)한 연구(硏究))

  • Shin, Jai Man;Kim, Tong Su;Han, Sang Sup
    • Journal of Forest and Environmental Science
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1983
  • The purpose of this study was to elucidate the ecophysiological habitat of natural Sorbus commixta forest at Mt. Seorak. The results obtained were as follows: 1. The Sorbus commixta trees mainly distributed from 900m to 1,500m altitude. In there, the warm index(WI) was about 42$3.2{\times}10^3$ to $9.2{\times}10^3$, cation exchange capacity(CEC) was 13.7 to 19.5mg/100g, N content 0.21 to 0.39%, $P_2O_5$ content was 22.6 to 38.7ppm, and pH value was 5.6 to 5.8 respectively. 4. The upper crown trees in Sorbus commixta communities were Abies nephrolepis, Taxus cuspidata, Betula platyphylla var. japonica, Quercus${\times}$grosseserrata, Acer mono, Prunus sargentii, Carpinus cordata, Tilia amurensis, and the under crown trees were Rhododendron brachycarpum, Acer pseudo-sieboldianum, Thuja olientalis, Corylus heterohpylla, Philadelphus schrenckii, Rhododendron schlippenbachii, Rhododendron mucronulatum, and Magnolia sieboldii. 5. The stand densities were 1,156 trees/ha at 1,160m and 3,600 trees/ha at 1,300m respectively. The coverages by the DBH basal area were 0.37 at 1,160m and 0.31 at 1,300m respectively, and the vegetation coverages by the crown projection area were 2.04 at 1,160m and 1.61 at 1,300m respectively. 6. The light extinction coefficient(k) in Beer-Lambert's law, showed the distance, F(z), from top canopy to aboveground, was 0.17. 7. The water relations parameters of Sorbus commixta shoot were obtained by the pressure chamber technique. The osmotic pressure, ${\pi}_o$, at maximum turgor was -16.2 bar, and VAT pressure was 14.5bar. The osmotic pressure, ${\pi}_p$, at incipient plasmolysis was -19.4bar. The relative water contents at incipient plasmolysis were 83.1% ($v_p/v_o$) and 87.1%($v_p/w_s$;$w_s$, total water at maximum turgor). 8. The bulk modulus of elasticity(E) of shoot was about 69.6. The total symplasmic water to total water in shoot was 67.7%, and the apoplastic water to total water was 32.3%.

  • PDF