• Title/Summary/Keyword: Ecological parameters

Search Result 323, Processing Time 0.03 seconds

Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton

  • Choi, Jong-Yun;Kim, Seong-Ki;Jeng, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.

Use of Chlorophyll a Fluorescence Imaging for Photochemical Stress Assessment in Maize (Zea mays L.) Leaf under Hot Air Condition

  • Park, Jong Yong;Yoo, Sung Young;Kang, Hong Gyu;Kim, Tae Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.270-276
    • /
    • 2016
  • The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity ($F_m$) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield ($F_v/F_m$) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity ($F_m$) and Maximum fluorescence value ($F_p$) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (${\Phi}PSII$). Thus, NPQ and ${\Phi}PSII$ were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.

Changes of Growth and Hematological Constituents in the Rock Bream Oplegnathus fasciatus Exposed to TBT (TBT 노출에 따른 돌돔, Oplegnathus fasciatus의 성장 및 혈액성분의 변화)

  • Hwang, Un-Gi;Kim, Jun-Hwan;Kang, Ju Chan
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.219-229
    • /
    • 2013
  • Experiments were carried out to investigate the growth and hematological parameters of rock bream Oplegnathus fasciatus exposed to several different concentrations (0, 1, 2, 4, $8{\mu}g/L$) of tributyltin (TBT) for 4 weeks. Growth rate of the fish exposed to $8{\mu}g/L$ of TBT concentration was significantly lower than that of control group fish. The major hematological findings were significant decreases in the red blood cell count, hematocrit value and hemogobin concentration in the fish exposed to $8{\mu}g/L$. Although serum glucose concentration was significantly reduced compared to the control group, total protein concentration was found to be significantly increased over the control group. Exposure to $8{\mu}g/L$ of TBT concentration resulted in significant increase in the enzyme activities, such as glutamic oxalate transminase and glutamic pyruvate transminase in the fish. The present findings suggest that exposure to $8{\mu}g/L$ concentration of TBT can cause significant changes in growth and hematological parameters of rock bream Oplegnathus fasciatuso.

Ecological Comparisons of Stream Conditions Between the Unimpacted and Impacted Sites: Case Study

  • Lee, Jae-Hoon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.441-448
    • /
    • 2008
  • The purpose of this study was to analyze chemical water quality, fish trophic guilds, tolerance indicators, and fish community conditions in the Gap Stream and to compare the stream conditions between the unimpacted site and impacted site. This study was conducted in the physically stable season (May 2008) to minimize physical impacts such as flow and hydrological disturbance, and applied the study in the Gap Stream with two sites of unimpacted upstream site (Unim-S), mainly surrounded by forested area and impacted site (Im-S), influenced by the wastewater disposal plants and industrial complex in the urban region. Chemical data analysis showed that the degree of organic matter pollution, based on BOD, and COD, was $2{\sim}3$ fold greater in the Im-S than the Unim-S, and that TP, as eutrophication indicators, was 4.7 fold greater in the Im-S. Also, $NH_3-N$ was in 8.2 fold greater in the Im-S ($6.25\;mg\;L^{-1}$) than the Unim-S ($0.76\;mg\;L^{-1}$), indicating a massive influence of wastewater from the disposal plant. Similar results were found in other chemical parameters. Thus, chemical impacts in the Im-S were evident, compared to the unimpacted site. Evaluations of tolerant indicator species indicated that sensitive species were dominant in the Unim-S (23.9%) and tolerant species were dominant (97.8%) in the Im-S. Condition factor (CF) was averaged 0.95 ($0.68{\sim}1.18$) in the Unim-S and 1.08 ($0.93{\sim}1.22$) in the Im-S. Fish community in the Unim-S and Im-S was categorized as Zacco-community and Hemibarbus-community, respectively, and the community diversity index (H') was significantly (p<0.05) higher in the Unim-S (0.810) than the Im-S (0.466). Overall, our results suggest that the comparison approach of various chemical and ecological indicators provide important information in identifying multiple stressors in the stream ecosystems.

Soybean Ecological Response and Seed Quality According to Altitude and Seeding Dates

  • Shin, Sang-Ouk;Shin, Seong-Hyu;Ha, Tae-Jeong;Lim, Sea-Gyu;Choi, Kyung-Jin;Baek, In-Youl;Lee, Sang-Chul;Park, Keum-Yong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.143-158
    • /
    • 2009
  • This experiment was carried out to examine ecological response and soybean quality as affected by environmental cultivation for producing high seed quality in domestic soybean variety. The results are as follows: Under equal cumulative temperature condition, soybean plants grown in Muju showed longer days to flowering, which was an effect of the long day-length on high latitudes, and longer duration of reproductive stage as a result of low temperature within that period. Considering apparent seed quality, 100 seed weight of soybeans grown in Muju was heavier than Miryang. Ratio of seed crack and disease-damaged seeds was lower in Muju, and these parameters decreases as planting was delayed. The protein contents did not show significant difference in terms of altitude and planting date, however, crude oil contents were higher in Miryang. An opposite trend was observed in C18:1 and C18:3. In the fatty acid composition, the proportion of C18:1 decreased as seeding date was delayed, and was higher in Miryang. Opposite observations were obtained from C18:3. The anthocyanin contents were highest on June 10 planting and higher in Muju than in Miryang. Isoflavone content was higher as seeding date was delayed and is similar accross seeding dates in Muju. As a summary, for high seed quality production the optimum planting date was June 10, and Muju was more suitable region than Miryang.

Ecosystem Health Diagnosis Using Integrative Multiple Eco-metric Model Approaches

  • Kim, Hyun-Mac;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • The object of this study was to evaluate lotic ecosystem health using multiple eco-metric approaches such as water chemistry diagnosis, physical habitat health evaluations, and biological integrity modeling at 100 streams of four major watersheds. For the study, eight chemical water quality parameters such as nutrients (N, P) and organic material were measured and 11-metric models of Qualitative Habitat Evaluation Index (QHEI) and multiple eco-metric health assessment model (MEHA) were applied to the four major watershed. Nutrient analysis of nitrogen (N) and phosphorus (P) in all watersheds indicated a eutrophic state depending on the locations of sampling streams. Physical habitat health, based on the QHEI model, averaged 114 (range: 56 - 194), judging as a "good condition" by the criteria of Plafkin et al. (1989). In addition, primary (H1 - H4), secondary (H5 - H7), and tertiary habitat metric variables (H8 - H11) were analyzed in relation to the physical habitat degradations. The plots of tolerant species ($P_{TS}$) and sensitive species ($P_{SS}$) to water quality showed that the proportions of $P_{TS}$ had positive linear functions with nutrients, and that the $P_{SS}$ had inverse linear relations with the chemical variables. The model of eco-metric health assessment showed that mean MEHA was 20.4, indicating a fair condition. Overall, our data suggest that water chemistry, based on nutrients and organic matter, directly modified the trophic structures in relation to food chain in the aquatic ecosystems, and then these directly influenced the compositions of tolerance/sensitive species, resulting in degradations of overall ecological health.

Coexistence of plant species under harsh environmental conditions: an evaluation of niche differentiation and stochasticity along salt marsh creeks

  • Kim, Daehyun;Ohr, Sewon
    • Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.162-177
    • /
    • 2020
  • Background: Ecologists have achieved much progress in the study of mechanisms that maintain species coexistence and diversity. In this paper, we reviewed a wide range of past research related to these topics, focusing on five theoretical bodies: (1) coexistence by niche differentiation, (2) coexistence without niche differentiation, (3) coexistence along environmental stress gradients, (4) coexistence under non-equilibrium versus equilibrium conditions, and (5) modern perspectives. Results: From the review, we identified that there are few models that can be generally and confidently applicable to different ecological systems. This problem arises mainly because most theories have not been substantiated by enough empirical research based on field data to test various coexistence hypotheses at different spatial scales. We also found that little is still known about the mechanisms of species coexistence under harsh environmental conditions. This is because most previous models treat disturbance as a key factor shaping community structure, but they do not explicitly deal with stressful systems with non-lethal conditions. We evaluated the mainstream ideas of niche differentiation and stochasticity for the coexistence of plant species across salt marsh creeks in southwestern Denmark. The results showed that diversity indices, such as Shannon-Wiener diversity, richness, and evenness, decreased with increasing surface elevation and increased with increasing niche overlap and niche breadth. The two niche parameters linearly decreased with increasing elevation. These findings imply a substantial influence of an equalizing mechanism that reduces differences in relative fitness among species in the highly stressful environments of the marsh. We propose that species evenness increases under very harsh conditions if the associated stress is not lethal. Finally, we present a conceptual model of patterns related to the level of environmental stress and niche characteristics along a microhabitat gradient (i.e., surface elevation). Conclusions: The ecology of stressful systems with non-lethal conditions will be increasingly important as ongoing global-scale climate change extends the period of chronic stresses that are not necessarily fatal to inhabiting plants. We recommend that more ecologists continue this line of research.

Environmental Impact Assessments along with Construction of Residential and Commercial Complex (주거단지 건설이 하천에 미치는 생태영향평가)

  • An, Kwang-Guk;Han, Jeong-Ho;Lee, Jae Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Estimating the Soil Carbon Stocks for a Pinus densiflora Forest Using the Soil Carbon Model, Yasso

  • Lee, Ah-Reum;Noh, Nam-Jin;Cho, Yong-Sung;Lee, Woo-Kyun;Son, Yo-Whan
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • The soil carbon stock for a Pinus densiflora forest at Gwangneung, central Korea was estimated using the soil carbon model, Yasso. The soil carbon stock measured in the forest was 43.73 t C $ha^{-1}$, and the simulated initial (steady state) soil carbon stock and the simulated current soil carbon stock in 2007 were 39.19 t C $ha^{-1}$ and 38.90 t C $ha^{-1}$, respectively. Under the assumption of a $0.1^{\circ}C$ increase in mean annual temperature per year, the decomposition and litter fractionation rates increased from 0.28 to 0.56 % $year^{-1}$ and the soil carbon stock decreased from 0.03 to 0.12 % $year^{-1}$. Yasso is a simple and general model that can be applied in cases where there is insufficient input information. However, in order to obtain more accurate estimates in Korea, parameters need to be recalibrated under Korean climatic and vegetation conditions. In addition, the Yasso model needs to be linked to other models to generate better litter input data.

Photochemical assessment of maize (Zea mays L.) seedlings grown under water stress using photophenomics technique

  • Ham, Hyun Don;Kim, Tea Seong;Yoo, Sung Yung;Park, Ki Bae;Kim, Tae Wan
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.341-341
    • /
    • 2017
  • Abiotic stress adversely affects crop growth worldwide. Drought of the major abiotic stresses have the most significant impact on all of the crop. The main objective of this study was to assess the effects of drought stress on photochemical performance and vitality of maize (Zea mays L.). The photochemical characteristics were analyzed in the context of period of drought stress during the maize growth. Drought experiment was carried out for four weeks, thereafter, the drought treated maize was re-watered. The polyphasic OJIP fluorescence transient was used to evaluate the behavior of photosystem II (PSII) and photosystem I (PSI) during the entire experiment period. In drought stress, the performance Index (PI) level was reached earlier when compared to the controls. For the screening of drought stress tolerance the drought factor index (DFI) of each variety was calculated as follow DFI= log(A) + 2log(B). All the fourteen cultivars show DFI ranged from -0.69 to 0.30, meaning less useful in selection of drought tolerant cultivars. PI and electron transport flux values of fourteen cultivars were to indicate reduction of photosynthetic performance during the early vegetative stage under drought stress. In conclusion, DFI and energy flux parameters can be used as photochemical and physiological index.

  • PDF