• Title/Summary/Keyword: Ecological data

Search Result 2,092, Processing Time 0.026 seconds

Development of a decision framework for the designing and implementation of a sustainable underground water storage system

  • Gladden, Lennox Alexander;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.244-244
    • /
    • 2015
  • Managed Aquifer Recharge (MAR) in the form of Aquifer Storage and Recovery (ASR) systems are being applied for numerous water augmentation projects both in developed and developing countries. Given the onset of Climate Change and its influence on weather patterns and land use, it has been acknowledged the utilization of this technology will be ever increasing. This technique like all others does have its drawbacks or disadvantages, whereby to overcome these drawbacks or disadvantages it is recommended that logical planning process be followed. In this study, we developed a decision framework known as "Decision framework for the planning, designing, construction/testing and implementation of subsurface water storage system" to further standardize the planning and design process of subsurface water storage system to increase the probability of having a successful ASR/ASTR project. The formulation of this framework was based on earlier frameworks, guidelines, published papers and technical reports which were compiled into a data collection database. The database of which consider both qualitative and quantitative aspect for example recharge objectives, site location, water chemistry of the native, source and recovered water, aquifer characteristics(hydraulic conductivity, transmissivity, porosity), injection/pumping rate, ecological constraints, societal restrictions, regulatory restrictions etc. The assimilation of these factors into a singular framework will benefit the broad spectrum of stakeholder as it maps the chronological order under which ASR project should be undertaken highlighting at each stage the feasibility of the project. The final stage of which should result in fully operational ASR system. The framework was applied to two case studies and through the application of a modified ASR site selection suitability index (Brown et al., 2005) a score was derived to identify the performance of each site. A high score of which meant a maximize chance of success given the reduce presence of project constraints.

  • PDF

Spatially Distributed Model for Soil Loss Vulnerability Assessment in Mekong River Basin

  • Thuy, H.T.;Lee, Giha;Lee, Daeeop;Sophal, Try
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.188-188
    • /
    • 2016
  • The Mekong which is one of the world's most significant rivers plays an extremely important role to South East Asia. Lying across six riparian countries including China, Myanmar, Thailand, Laos, Cambodia and Vietnam and being a greatly biological and ecological diversity of fishes, the river supports a huge population who living along Mekong Basin River. Therefore, much attention has been focused on the giant Mekong Basin River, particularly, the soil erosion and sedimentation problems which rise critical impacts on irrigation, agriculture, navigation, fisheries and aquatic ecosystem. In fact, there have been many methods to calculate these problems; however, in the case of Mekong, the available data have significant limitations because of large area (about 795 00 km2) and a failure by management agencies to analyze and publish of developing countries in Mekong Basin River. As a result, the Universal Soil Loss Equation (USLE) model in a GIS (Geographic Information System) framework was applied in this study. The USLE factors contain the rainfall erosivity, soil erodibility, slope length, steepness, crop management and conservation practices which are represented by raster layers in GIS environment. In the final step, these factors were multiplied together to estimate the soil erosion rate in the study area by using spatial analyst tool in the ArcGIS 10.2 software. The spatial distribution of soil loss result will be used to support river basin management to find the subtainable management practices by showing the position and amount of soil erosion and sediment load in the dangerous areas during the selected 56- year period from 1952 to 2007.

  • PDF

Did the Timing of State Mandated Lockdown Affect the Spread of COVID-19 Infection? A County-level Ecological Study in the United States

  • Trivedi, Megh M.;Das, Anirudha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.4
    • /
    • pp.238-244
    • /
    • 2021
  • Objectives: Previous pandemics have demonstrated that several demographic, geographic, and socioeconomic factors may play a role in increased infection risk. During this current coronavirus disease 2019 (COVID-19) pandemic, our aim was to examine the association of timing of lockdown at the county level and aforementioned risk factors with daily case rate (DCR) in the United States. Methods: A cross-sectional study using publicly available data was performed including Americans with COVID-19 infection as of May 24, 2020. The United States counties with >100 000 population and >50 cases per 100 000 people were included. The independent variable was the days required from the declaration of lockdown to reach the target case rate (50/100 000 cases) while the dependent (outcome) variable was the DCR per 100 000 on the day of statistical calculation (May 24, 2020) after adjusting for multiple confounding socio-demographic, geographic, and health-related factors. Each independent factor was correlated with outcome variables and assessed for collinearity with each other. Subsequently, all factors with significant association to the outcome variable were included in multiple linear regression models using stepwise method. Models with best R2 value from the multiple regression were chosen. Results: The timing of mandated lockdown order had the most significant association on the DCR per 100 000 after adjusting for multiple socio-demographic, geographic and health-related factors. Additional factors with significant association with increased DCR include rate of uninsured and unemployment. Conclusions: The timing of lockdown order was significantly associated with the spread of COVID-19 at the county level in the United States.

The Multi-layered Context of the Ethnic Phenomenon: Focused on the Case of Asella Town, Ethiopia (종족 현상의 다층적 맥락: 에티오피아 아셀라 타운의 사례를 중심으로)

  • Seol, Byung-Soo
    • Cross-Cultural Studies
    • /
    • v.48
    • /
    • pp.253-287
    • /
    • 2017
  • The purpose of this study is to examine the ethnic phenomenon in the multi-layered context, based upon data collected from my fieldwork in Asella Town, Ethiopia. The town has experienced few ethnic conflicts at the collective level because of ecological conditions, the numerical balance between the two major ethnic groups-i.e., the Oromo and the Amhara-, frequent ethnic intermarriages as well as effects of a unique sociocultural practice of 'breast-feeding.' However, despite positive influences of such a practice, the local community has continuously witnessed discrimination and threats by the dominant ethnic group. Most of my informants feel that ethnic intermarriage contributes to: (i) enforcement of bonds among both ethic groups and community members, (ii) acquisition of different ethnic cultures, (iii) cultivation of the spirit of tolerance among people, and (iv) production of the superior second generation that has hybrid/multiple ethnic identities. However, some informants harbor negative attitudes towards ethnic intermarriage because they perceive it as a selfish choice of two parties and damages ethnic identity. Most informants consider ongoing Oromonization as natural, whereas others insist that it should be understood in the context of coercion, superficiality and survival strategy.

Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.155-162
    • /
    • 2018
  • Background: In ecosystem carbon cycle studies, distinguishing between $CO_2$ emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil's temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil's temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

Temperature-driven changes of pollinator assemblage and activity of Megaleranthis saniculifolia (Ranunculaceae) at high altitudes on Mt. Sobaeksan, South Korea

  • Lee, Hakbong;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.265-271
    • /
    • 2018
  • Background: Temperature-driven variation in pollinator assemblage and activity are important information, especially at high altitudes, where rising temperature trends exceed global levels. Temporal patterns of pollinators in a flowering season can be used as a proxy to predict the changes of high-altitude plants' mutualistic relationships. We observed a spring temperature change in one population of a high-altitude endemic species, Megaleranthis saniculifolia on Mt. Sobaeksan, and related it to pollinator assemblage and activity changes. Methods: This study was conducted at two sites, each facing different slopes (NE and NW), for two times in the spring of 2013 (early-flowering, April 27-28, vs. mid-flowering, May 7-8, 2013). We confirmed that the two sites were comparable in snowmelt regime, composition of flowering plants, and flower density, which could affect pollinator assemblage and activity. Pollinator assemblage and activity were investigated at three quadrats ($1m^2$ with 5-m distance) for each site, covering a total of 840 min observation for each site. We analyzed correlations between the temperature and visitation frequency. Results: Twelve pollinator species belonging to four orders were observed for M. saniculifolia at both sites during early- and mid-flowering times. Diptera (five species) and hymenopteran species (four species) were the most abundant pollinators. Pollinator richness increased at both sites toward the mid-flowering time [early vs. mid = 7 (NE) and 3 (NW) vs. 9 (NE) and 5 (NW)]. Compared to the early-flowering time, visitation frequency showed a fourfold increase in the mid-flowering time. With the progression of spring, major pollinators changed from flies to bees. Upon using data pooled over both sites and flowering times, hourly visitation frequency was strongly positively correlated with hourly mean air temperature. Conclusions: The spring temperature change over a relatively brief flowering period of M. saniculifolia at high altitudes can alter pollinator assemblages through pollinator dominance and visitation frequency changes. Thus, this study emphasizes information on intra- and inter-annual variations in the mutualistic relationship between pollinators and M. saniculifolia to further assess the warming impacts on M. saniculifolia's reproductive fitness.

Distribution and synchronized massive flowering of Sasa borealis in the forests of Korean National Parks

  • Cho, Soyeon;Kim, Youngjin;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.308-316
    • /
    • 2018
  • Background: Genus Sasa, dwarf bamboos, are considered to be species that lower biodiversity in the temperate forests of East Asia. Although they have a long interval, they, the monocarpic species, have a unique characteristic of large-scale synchronized flowering. Therefore, once they have flowered and then declined, it may be an opportunity for suppressed surrounding species. A previous study reported that Sasa borealis showed specialized flowering nationwide with a peak in 2015. However, this was based on data from a social network service and field survey at Mt. Jeombong. Therefore, we investigated S. borealis in the forests of five national parks in order to determine whether this rare synchronized flowering occurred nationwide, as well as its spatial distribution. Results: We found a total of 436 patches under the closed canopy of Quercus mongolica-dominated deciduous forests in the surveyed transects from the five national parks. Of these patches, 75% occupied a whole slope area, resulting in an enormous area. The patch area tended to be larger in the southern parks. Half (219 patches) of the patches flowered massively. Among them, 76% bloomed in 2015, which was consistent with the results of the previous report. The flowering rate varied from park to park with that of Mt. Seorak being the highest. The culms of the flowering patches were significantly taller (F = 93.640, p < 0.000) and thicker (F = 61.172, p < 0.000). Following the event, the culms of the flowering patches declined, providing a good opportunity for the suppressed plant species. The concurrent massive flowering of the mature patches was believed to be triggered by some stress such as a spring drought. Conclusion: We confirmed that the rare synchronized flowering of S. borealis occurred with a peak in 2015 nationwide. In addition, we explored that S. borealis not only monopolized an enormous area, but also dominated the floors of the late-successional Q. mongolica-dominated deciduous forests. This presents a major problem for Korean forests. As it declined simultaneously after flowering, there are both possibilities of forest regeneration or resettlement of S. borealis by massively produced seeds.

Analysis on Vegetation Change of Forest Fire Damaged Area in Sogeumgang District, Gyeongju National Park (경주국립공원 소금강지구 산불피해지의 식생변화 분석)

  • You, Ju-Han;Kwon, Soon-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.4
    • /
    • pp.47-64
    • /
    • 2019
  • The purpose of this study is to present the basic data for the management of National Park by surveying and analysing the change of vegetation of forest fire damaged area in Sogeumgang District, Gyeongju National Park. The covergae ratio, a number of species and dominant species changed overall in forest fire damaged area. The final result of the change is as follows. In case of coverage ratio in the shrub layer, Site 1 was 30%, 40% in Site 2, 50% in Site 3, 60% in Site 4 and 30% in Site 5. In the herb layer, Site 1 was 90%, 80% in Site 2, 90% in Site 3, 60% in Site 4 and 20% in Site 5. In case of the number of species in the shrub layer, Site 1 was 11 species, 8 species in Site 2, 6 species in Site 3, 10 species in Site 4, 7 species in Site 5, and in the herb layer, Site 1 was 22 species, 25 species in Site 2, 12 species in Site 3 and Site 4 each and 11 species in Site 5. In the dominant species, the shrub layer was Lespedeza maritima(Site 1, 2), Quercus serrata(Site 3), Quercus serrata and Lespedeza bicolor(Site 4) and Styrax japonicus(Site 5), the herb layer was Miscanthus sinensis var. purpurascens(Site 1, 3), Pteridium aquilinum var. latiusculum and Carex humilis var. nana(Site 2), Quercus serrata(Site 4) and Carex humilis var. nana andS tyrax japonicus(Site 5). The number of vascular plants was summarized as 91 taxa including 35 families, 69 genera, 78 species, 2 subspecies, 10 varieties and 1 form.

Application and Development of Carbon Emissions Factors for Deciduous Species in Republic of Korea - Robinia pseudoacacia, Betula platyphylla, and Liriodendron tulipifera - (국내 활엽수종의 탄소배출계수 개발 및 적용 - 아까시나무, 자작나무, 백합나무를 대상으로 -)

  • Lee, Sun Jeoung;Yim, Jong Su;Kang, Jin Take;Kim, Raehyun;Son, Yowhan;Park, Gawn Su;Son, Yeong Mo
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • According to the United Nations Framework Convention on Climate Change (UNFCCC), all parties have to submit the national GHG inventory report. Estimating carbon stocks and changes in Land Use, Land-Use Changes and Forestry (LULUCF) needs an activity data and emission factors. So this study was conducted to develop carbon emission factor for Robinia pseudoacacia L., Betula platyphylla var. japonica, and Liriodendron tulipifera. As a result, the basic wood density ($g/cm_3$) was 0.64 for R. pseudoacacia, 0.55 for B. platyphylla, and 0.46 for L. tulipifera. Biomass expansion factor was 1.47 for R. pseudoacacia, 1.30 for B. platyphylla, and 1.24 for L. tulipifera. Root to shoot ratio was 0.48 for R. pseudoacacia, 0.29 for B. platyphylla, and 0.23 for L. tulipifera. Uncertainty of estimated emission factors on three species ranged from 3.39% to 27.43% within recommended value (30%) by IPCC. We calculated carbon stock and change using these emission factors. Three species stored carbon in forest and net $CO_2$ removal was $1,255,398\;t\;CO_2/yr$ during 5 years. So we concluded that our result could be used as emission factors for national GHG inventory report on forest sector.

Phytoplankton Ecosystems at Oil Spill Coasts Including the Hebei Spirit Oil Spill Site Near Taeanhaean National Park, Korea 1. Interannual Variability of Phytoplankton Community in Summer (태안해안국립공원 인근의 허베이스피리트 사고를 포함한 유류유출 해역의 식물플랑크톤 생태계 1. 하계 식물플랑크톤 군집의 연변동)

  • Yih, Wonho;Kim, Hyung Seop;Jo, Soo-Gun
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Right after the 2007 Hebei Spirit Oil Spill phytoplankton ecosystems were investigated for 11 years based on the seasonal monitoring of the composition and abundance of phytoplankton species. Comparable time-series data from the 1989 Exxon Valdez or the 2010 Deepwater Horizon Oil Spill sites were not available. It was suggested that the ecological healthiness of phytoplankton ecosystems at EVOS sites had recovered after 10 years following the oil spill based on chlorophyll concentrations even though these concentrations only represented phytoplankton communities in most cases. Chlorophyll concentrations can only reflect limited aspects of highly complex phytoplankton ecosystems. During the last 11 years following the 2017 HSOS, extreme variabilities were met in the seasonally averaged ratios of diatoms to phototrophic flagellates including dinoflagellates based on the microscopic cell countings. Summer phytoplankton communities exhibited some cyclic interannual changes in dominant groups every 2-4 years. During the early years (2008-2010) cryptophytes or raphidophytes (Chattonella spp.) dominated alternately each year, which was repeated again in 2014, 2015 and 2017. Two thecate dinoflagellates, Tripos fusus and Tripos furca, together accounted for 52.5% and 50.0% of all organisms in the summers of 2011 and 2012, respectively, which was repeated again in 2018. Summer occurrence and dominance by the phototrophic flagellates including HABs (Harmful Algal Blooms) species as well as their interannual variabilities in the oil spill sites could be utilized as markers for the stable and long-term management of healthy ecosystems. For this type of scientific ecosystem management monitoring of chlorophyll concentrations may sometimes be insufficient to gain a proper and comprehensive understanding of phytoplankton communities located in areas where oil spills have occurred and harmed the ecosystem.