• Title/Summary/Keyword: Ecological Impact Assessment

Search Result 367, Processing Time 0.022 seconds

Habitat Suitability Models of Endangered Wildlife Class II Mauremys reevesii in Gurye-gun, the Republic of Korea (전라남도 구례군에 서식하는 멸종위기 야생생물 II급 남생이의 서식지 적합성 모델 개발)

  • Chang-Deuk Park;Jeongwoo Yoo;Kwanik Kwon;Nakyung Yoo;Moon Seong Heo;Ju-Duk Yoon
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.83-93
    • /
    • 2023
  • This study was conducted to clarify the environmental variables that affect the appearance of Mauremys reevesii and to understand the relationship between M. reevesii and the variables. Habitat environmental survey was implemented by selecting 17 environmental variables considering ecological characteristics of M. reevesii in the main reservoir in Gurye-gun, the Republic of Korea. And the habitat data on the presence and absence of M.reevesii were analyzed statistically. The habitat suitability model of M. reevesii was described in following equation : logit (p) = -3.68 + (0.17 × leaf litter depth) + (1.55 × vegetation coverage of overstory on land) + (0.71 × coverage of midstory on land) + (0.96 × vegetation coverage of understory on water). This information gained is valuable for better understanding the distribution and how to conserve and promote populations of M. reevesii occurring in the Republic of Korea.

A Study on the Evaluation of the Adsorption Efficiency of Heavy Metals by the Content of Jellyfish Extract at Immunity Reaction in Alginate bead (알긴산 비드에 혼합된 해파리 면역 반응물질 함량에 따른 중금속 흡착효율 평가에 관한 연구)

  • Jong Hwan Kim;Hyeok Jin Park;Inho Choi;Eunjin Kim;I Song Choi;Jong-Min Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.431-436
    • /
    • 2023
  • As the industry develops, the amount of heavy metals flowing into the ecosystem is increasing. Heavy metals are difficult to decompose and remain in the ecosystem for a long time and cause toxicity, which is removed by physicochemical methods such as adsorption, filtration, and chemical precipitation during water treatment. In this study, Alginate bead was selected as a chelating resin for adsorbing and removing heavy metals, and the Jellyfish Extract at Immunity reaction (JEI) were mixed to evaluate the adsorption efficiency of heavy metals accordingly. beads mixed with JEI showed high adsorption efficiency in lead (79-99%) and copper (64-70%) according to the characteristics of Alginate, and low adsorption efficiency in cadmium (25-37%) and zinc (5-6%). Although heavy metal adsorption did not increase in proportion to the content of JEI, 50% and 100% JEI beads showed significant increases. As a result of applying the reaction rate equation, it was found that it was more suitable for the pseudo-secondary reaction equation than the pseudo-first reaction equation.

A Study on Monitoring and Management of Invasive Alien Species Applied by Citizen Science in the Wetland Protected Areas(Inland Wetland) (시민과학을 활용한 습지보호지역의 생태계교란 식물 모니터링 및 관리방안 연구)

  • Inae Yeo;Kwangjin Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.305-317
    • /
    • 2023
  • This study suggested a citizen science based model to enhance the efficacy of the managing invasive alien plants and examined whose applicability in 3 Wetland Protected Areas (Jangrok of Gwangju metropolitan city, Madongho of Goseong in South Gyeongsang Province, and Ungok of Gochang in North Jeolla Province). The process consists of (a) collecting citizen scientist including local residents of 3 protected areas and piling up information on the 4 species of invasive alien plants (Sicyos angulatus L., Solanum carolinense L., Ambrosia artemisiifolia L. and Solidago altissima L) in a information platform Ecological Information Bank (EcoBank) from September 18th to October 31th, (b) constructing distribution map containing the location and density (3 phases: individual-population-community) of target plants, (c) providing distribution map to Environment Agency and local government who is principal agent of managing invasive alien plants in 3 protected areas, and from whom (d) surveying applications of the distribution map and opinion for future supplement. As a result, citizen science based monitoring should be continued to complement the nationwide information for the field management of invasive alien plants with the expansion of target species (total 17 plants species that Ministry of Environment in South Korea designated) and period of monitoring in a year to increase the usability of surveyed information from citizen science. In the long run, effectiveness of the management of invasive alien species applied by citizen science should be reviewed including efficacy of field management process from citizen's participating in elimination project of invasive alien plants and time series distribution followed by the management of the species.

Ecological Health Assessments on Turbidwater in the Downstream After a Construction of Yongdam Dam (용담댐 건설후 하류부 하천 생태계의 탁수영향 평가)

  • Kim, Ja-Hyun;Seo, Jin-Won;Na, Young-Eun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.130-142
    • /
    • 2007
  • This study was to examine impacts of turbid water on fish community in the downstream of Yongdam Dam during the period from June to October 2006. For the research, we selected six sampling sites in the field: two sites were controls with no influences of turbid water from the dam and other remaining four sites were the stations for an assessment of potential turbid effects. We evaluated integrative health conditions throughout applications of various models such as necropsy-based fish health assessment model (FHA), Index of Biological Integrity (IBI) using fish assemblages, and Qualitative Habitat Evaluation Index (QHEI). Laboratory tests on fish exposure under 400 NTU were performed to find out impact of turbid water using scanning electron microscope (SEM). Results showed that fine solid particles were clogging in the gill in the treatments, while particles were not found in the control. This results indicate that when inorganic turbidity increases abruptedly, fish may have a mechanical abrasion or respiratory blocking. The stream health condition, based on the IBI values, ranged between 38 and 48 (average: 42), indicating a "excellent" or "good" condition after the criteria of US EPA (1993). In the mean time, physical habitat condition, based on the QHEI, ranged 97 to 187 (average 154), indicating a "suboptimal condition". These biological outcomes were compared with chemical dataset: IBI values were more correlated (r=0.526, p<0.05, n=18) with QHEI rather than chemical water quality, based on turbidity (r=0.260, p>0.05, n=18). Analysis of the FHA showed that the individual health indicated "excellent condition", while QHEI showed no habitat disturbances (especially bottom substrate and embeddeness), food-web, and spawning place. Consequently, we concluded that the ecological health in downstream of Yongdam Dam was not impacted by the turbid water.

The Evaluation of Carbon Storage and Economic Value Assessment of Wetlands in the City of Seoul (서울시 습지지역의 탄소저장 및 경제적 가치 평가에 대한 연구)

  • Choi, Jiyoung;Oh Jongmin;Lee, Sangdon
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • The ecosystem and landscape conservation areas of Seoul were designated according to the Natural Environment Conservation Act and the Natural Environment Conservation Ordinance. With the adoption of the "Rapid Assessment of Wetland Ecosystem Service (RAWES)" approach and the "wetland ecosystem service" for the Ramsar Wetland City Accreditation at the 13th Meeting of the Conference of the Contracting Parties to the Ramsar Convention on Wetlands in 2018, the need for data evaluating wetland ecosystem services has become a necessity. Therefore, in this study, we selected five wetlands from the ecosystem and landscape conservation areas in Seoul, having high ecological conservation values, and evaluated their carbon sequestration and economic value assessment using the InVEST model, which is an ecosystem service evaluation technique. The evaluation results for carbon storage in each wetland are as follows: Tancheon Wetland: 3,674.62 Mg; Bamseom Island in the Hangang River: 1,511.57 Mg; Godeok-dong Wetland: 5,007.21 Mg; Amsa-dong Wetland: 7,108.47 Mg; and Yeouido Wetland: 290.27 Mg. Particularly, the Tancheon Wetland showed the lowest carbon sequestration of 1,130.37 Mg, as compared to the results acquired in 2013, of 4,804.99 Mg. When the average effective carbon rate of $16.06 (US) was applied to the decreased carbon sequestration value, a loss of $15,910.58(US) was calculated. Furthermore, if the average social cost of carbon ($204 (US)) is considered, which includes the impact of climate change on productivity and ecosystems, the total loss is equivalent to $202,101.97 (US). This study aims to examine the natural resource value of urban wetlands by evaluating selected major wetlands in Seoul. This study can be utilized as basic data to plan for the protection and management of the ecosystem and landscape conservation areas. Additionally, because wetland value assessment is considered essential, the results of this study can be used in future research to provide measures for evaluating ecosystem services in the Ramsar Wetland City Certification System. Moreover, this study can be utilized for selecting important wetlands as Ramsar sites, and to raise awareness about the significance of conserving urban wetlands, and for expanding international exchange among the Ramsar Wetland sites.

Climate Change Impacts on Forest Ecosystems: Research Status and Challenges in Korea (기후변화에 따른 산림생태계 영향: 우리나라 연구현황과 과제)

  • Lim Jong-Hwan;Shin Joon-Hwan;Lee Don-Koo;Suh Seung-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Recent global warming seems to be dramatic and has influenced forest ecosystems. Changes in phonology of biota, species distribution range shift and catastrophic climatic disasters due to recent global warming have been observed during the last century. Korean forests located mainly in the temperate zone also have been experienced climatic change impacts including shifting of leafing and flowering phonology, changes in natural disasters and forest productivity, However, little research has been conducted on the impact of climate change on forest ecosystems in Korea which is essential to assess the impact and extent of adaptation. Also there is a shortage in basic long-term data of forest ecosystem processes. Careful data collection and ecological process modeling should be focused on characteristic Korean forest ecosystems which are largely complex terrain that might have hindered research activities. An integrative ecosystem study which covers forest dynamics, biological diversity, water and carbon flux and cycles in a forest ecosystem and spatial and temporal dynamics modeling is introduced. Global warming effects on Korean forest ecosystems are reviewed. Forestry activity and the importance of forest ecosystems as a dynamic carbon reservoir are discussed. Forest management options and challenges for future research, impact assessment, and preparation of mitigating measures in Korea are proposed.

A Diagnosis of Ecological Health Using a Physical Habitat Assessment and Multimetric Fish Model in Daejeon Stream (물리적 서식지평가기법 및 어류 다변수 평가모델에 의거한 대전천의 생태학적 건강도 진단)

  • Kim, Ja-Hyun;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.3 s.113
    • /
    • pp.361-371
    • /
    • 2005
  • The objective of study was to diagnose integrative ecological health of Daejeon Stream, one of the tributaries of Guem River, during May 2004 ${\sim}$ April 2005. The research approach was primarily based on a Qualitative Habitat Evaluation Index (QHEI) and the Index of Biological Integrity (IBI) using fish assemblage. These outcomes were compared with conventional chemical dataset. For the experiment, four sampling sites were chosen from Daejeon Stream and long-term water quality data during 1995 ${\sim}$ 2004 (obtained from the Ministry of Environment) were analyzed in the spatial and temporal aspects. For the biological health assessment, we developed a stream health assessment model (SHA model) far regional applications. We found that current water quality conditions, based on the COD, BOD, TN and TP, were enhanced by 1.6 ${\sim}$ 5.3 fold over the period of 1995 ${\sim}$ 2004 and that the parameters showed a typical longitudinal decline from the upstream to downstream reach. The differences of water quality between the two reaches were more than 4.4 times, indicating a large spatial variations within the stream. The health conditions, based on the SHA model, averaged 23 and varied from 20 to 26 depending on the sampling stations. Values of the QHEI varied from 39 (Poor condition) to 124 (Cood condition)and values of QHEI in the reach of S2 ${\sim}$ S4 had significantly lower than in the headwater site (S1). Also, biological stream health, based on the criteria of US EPA (1993), was judged as 'Poor condition', in the S4 where TN, TP, BOD and COD were highest. In the meantime, maximum value of SHA (26) was found in the upstream reach (S1) where the water quality and QHEI were best. We also found that compositions of sensitive species showed a linear function with water quality conditions and this pattern was evident in the tolerant species. Thus, the biological stream health, based on the SHA model, matched well water chemistry. Overall outcomes suggest that the biological health impact was a function of chemical degradation and physical habitat quality in the stream.

The Prediction of Water Quality in Ulsan Area Using Material Cycle Model (물질순환모델을 이용한 울산해역의 수질예측)

  • SHIN BUM-SHICK;KIM KYU-HAN;PYUN CHONG-KUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.55-62
    • /
    • 2006
  • Recently, pollution by development in coastal areas is going from bad to worse. The Korean government is attempting to make policies that prevent water pollution, but it is still difficult to say whether such measures are lowering pollution to an acceptable level. More specifically, the general investigation that has been done in KOREA does not accurately reflect the actual conditions of pollution in coastal areas. An investigation that quantitatively assesses water quality management using rational prediction technology must be attempted, and the ecosystem model, which incorporates both the 3-dimensional hydrodynamic and material cycle models, is the only one with a broad enough scope to obtain accurate results. The hydrodynamic model, which includes advection and diffusion, accounts for the ever-changing flow and (quality) of water in coastal areas, while the material cycle model accounts for pollutants and components of decomposition as sources of the carbon, phosphorus, and nitrogen cycles. In this paper, we simulated the rates of dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen(T-N) and total-phosphorous(T-P) in Korea's Ulsan Area. Using the ecosystem model, we did simulations using a specific set of parameters and did comparative analysis to determine those most appropriate for the actual environmental characteristics of Ulsan Area. The simulation was successful, making it now possible to predict the likelihood of coastal construction projects causing ecological damage, such as eutrophication and red tide. Our model can also be used in the environmental impact assessment (EIA) of future development projects in the ocean.

Characterization of macroalgal epiphytes on Thalassia testudinum and Syringodium filiforme seagrass in Tampa Bay, Florida

  • Won, Boo-Yeon;Yates, Kim K.;Fredericq, Suzanne;Cho, Tae-Oh
    • ALGAE
    • /
    • v.25 no.3
    • /
    • pp.141-153
    • /
    • 2010
  • Seagrass epiphyte blooms potentially have important economic and ecological consequences in Tampa Bay, one of the Gulf of Mexico's largest estuaries. As part of a Tampa Bay pilot study to monitor the impact of environmental stresses, precise characterization of epiphyte diversity is required for efficient management of affected resources. Thus, epiphyte diversity may be used as a rational basis for assessment of ecosystem health. In May 2001, epiphytic species encompassing green, brown and red macroalgae were manually collected from dense and sparse seagrass beds of Thalassia testudinum and Syringodium filiforme. A total of 20 macroalgal epiphytes, 2 Chlorophyta, 2 Phaeophyta, and 16 Rhodophyta, were found on T. testudinum and S. filiforme seagrass at the four sampling sites (Bishop Harbor, Cockroach Bay, Feather Sound, and Mariposa Key). The Rhodophyta, represented by 16 species, dominated the numbers of species. Among them, the thin-crusted Hydrolithon farinosum was the most commonly found epiphyte on seagrass leaves. Species number, as well as species frequency of epiphytes, is higher at dense seagrass sites than sparse seagrass sites. Four attachment patterns of epiphytes can be classified according to cortex and rhizoid development: 1) creeping, 2) erect, 3) creeping & erect, and 4) erect & holding. The creeping type is characterized by an encrusting thallus without a rhizoid or holdfast base. Characteristics of the erect type include a filamentous thallus with or without a cortex, and a rhizoid or holdfast base. The creeping and erect type is characterized by a filamentous thallus with a cortex and rhizoid. A filamentous thallus with a cortex, holdfast base, and host holding branch is characteristics of the erect and holdfast attachment type. This study characterized each species found on the seagrass for epiphyte identification.

Floristic Study of Tamjin River Estuary in Gangjin-gun, Korea (탐진강 하구역 일대(강진군)의 관속식물상)

  • Jang, Hyun-Do;Leem, Hyosun;Han, Seahee;Oh, Ami;Oh, Byoung-Un;Yang, Sungyu
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.579-603
    • /
    • 2020
  • In order to provide fundamental information about the floristic composition of the area along with an assessment of the environmental impact, a floristic study of the vascular plants in the Tamjin River estuary in Gangjin-gun was conducted for a total of nine days, in the period from June 2014 to September 2014. We found that the vascular plants in this region comprised 424 taxa belong to 102 families, 281 genera, 390 species, 5 subspecies, 26 varieties, and 3 forma. Five taxa of Korean endemic plants including Weigela subsessilis (Nakai) L.H.Bailey, Lespedeza maximowiczii var. tricolor (Nakai) Nakai, and Clematis trichotoma Nakai were collected. Two least concern (LC) taxa of rare plants (as designated by the Korea Forest Service) were collected: Hydrocharis dubia (Blume) Backer and Platycladus orientalis (L.) Franco. Ten the floristic regional indicator taxa from the third to the fifth grade were identified: two taxa belonged to grade IV, and eight taxa belonged to grade III. Twenty-four taxa of salt-tolerant plants, including Artemisia fukudo Makino, Carex rugulosa Kuk., and Suaeda glauca (Bunge) Bunge, as well as 44 taxa of aquatic plants, including Najas marina L., Nuphar oguraensis Miki, and Nymphoides indica (L.) Kuntze, were investigated in this region. Fifty-nine taxa of naturalized plants were recorded, among which the following six taxa were plants that caused ecosystem disturbance: Ambrosia artemisiifolia L., Humulus scandens (Lour.) Merr., Lactuca scariola L., Rumex acetosella L., Solidago altissima L., and Symphyotrichum pilosum (Willd.) G.L.Nesom.