• Title/Summary/Keyword: Eco-hydrological model

Search Result 7, Processing Time 0.019 seconds

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Evaluation of Eco-Hydrological Changes in the Geum River Considering Dam Operations: I. Flow Regime Change Analysis (댐 운영을 고려한 금강의 생태.수문학적 변화 평가 : I. 유황변화 분석)

  • Ko, Ick-Hwan;Kim, Jeong-Kon;Park, Sang-Young
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In this study, based on the major activities which might have affected the ecological system of the Geum River, a conceptual model was proposed to guide scenario development for the eco-hydrological river evaluation. Also, an analysis method employing a set of models consisting, with other supporting programs, of KModSim for watershed network analysis and RAP for ecosystem analysis was developed for eco-hydrological river assessment. Then, hydrological analyses with various scenarios were conducted to examine the flow regime changes expected from the construction and operation of the Youngdam Multipurpose Dam (YMD) and Daecheong Multipurpose Dam (DMD) in the Geum River basin. The results indicated that the "Percentile 10" values for 10% exceeding time were decreased by 20.5% and 8.0% at Sutong downstream of YMD and Gongju downstream of DMD, respectively, while "Percentile 90" values for 90% exceeding time were increased by 56.3% and 340.8% at Sutong and Gongju, respectively, resulting in the reduction of the high flow variability typical for unregulated rivers in Korea. The results of eco-hydrological analyses will be presented in the following papers.

THE WATERSHED MANAGEMENT AND ASSESSMENT USING GIS BASED ON HYDROLOGICAL AND LANDSCAPE ECOLOGICAL ANALYSIS

  • Lee, Ju-Young;Hopkins, James
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.9-20
    • /
    • 2006
  • The watersheds are functional geographical areas that integrate a variety of environmental and ecological processes and human impacts on landscapes. Geographical assessments using GIS recognize the relationship between interdependence of resources and ecological/environmental components in watersheds. They are useful methodology for viable long term natural resource management. This paper performs through the using hydrological analyses, landscape ecological analyses, remote sensing, and GIS. Indicators are items or measures that represent key components of the small watersheds, and they are developed to be evaluated. Some indicators are described that they represent watershed condition and trend as well as focus on physical, biological and chemical properties of small watershed. Also, ecological functions such as stability, resilience, and sensitivity are inferred from them. The model implemented in GIS allows to reflect the ecological and hydrological functioning of watershed. Methodology from image analysis, landscape ecological analysis, spatial interpolation, and numerical process modeling are integrated within GIS to provide assessment for eco-logical/environmental condition. Results are described from the small watershed of Gwynns Falls in Baltimore County and Baltimore City, Maryland, an area of about 66.5 square miles. The small watershed within Gwynns Falls watershed are subject to a number of land-use. But it is predominantly urban, with significantly lesser amounts of forest and agriculture. The increasing urbanization is ass-coiated with ecological/environmental impacts and citizen conflicts.

  • PDF

Evaluation of Urbanization Effect and Analysis of Hydrological Characteristics in the Gap River Catchment using SWAT (SWAT 모델을 이용한 갑천유역에 대한 수문 특성 분석 및 도시화 영향 평가)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.881-890
    • /
    • 2006
  • Hydrological characteristics and urbanization effects in the Gap river catchment were investigated employing the SWAT model. The hydrological characteristics analysis showed that total runoff in the whole catchment from 2001 to 2004 consists of 44% of groundwater flow, 6% of lateral flow and 50% of surface flow under year 2000 landuse conditions. The analysis of urbanization effect using different landuse maps for year 1975 and 2000 indicated that although 5% increase in urbanized areas did not significantly impact on the total runoff in the whole catchment, a sub-basin where urbanized area increased by 32% over the past 30 years showed $68{\sim}73%$ decrease in groundwater flow and $22{\sim}66%$ increase in surface flow. It was found that urbanization decreased overall soil moisture and percolation rate except for some increase in soil moisture during dry season. Urbanization effect was found more sensitive during a dry year which has less rainfall and higher evapotranspiration than during a wet year. Therefore, from the results of this study we could infer increased flood damage during wet season and dried stream during dry season due to urbanization. To conclude, the results of this study can provide fundamental information to the eco-friendly restoration project for the three major rivers (Gap-cheon, Yudeung-cheon and Daejeon-cheon) in Daejeon Metropolitan City.

Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro-Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds (수문생태모형 RHESSys의 평가: 두 복잡지형 유역에서의 모수화와 적용)

  • Lee, Bo-Ra;Kang, Sin-Kyu;Kim, Eun-Sook;Hwang, Tae-Hee;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.247-259
    • /
    • 2007
  • In this study, we examined the flux of carbon and water using an eco-hydrological model, Regional Hydro-Ecologic Simulation System (RHESSys). Our purposes were to develop a set of parameters optimized for a well-designed experimental watershed (Gwangneung Research Watershed, GN) and then, to test suitability of the parameters for predicting carbon and water fluxes of other watershed with different regimes of climate, topography, and vegetation structure (i.e Gangseonry Watershed in Mt. Jumbong, GS). Field datasets of stream flow, soil water content (SWC), and wood biomass product (WBP) were utilized for model parameterization and validation. After laborious parameterization processes, RHESSys was validated with the field observations from the GN watershed. The parameter set identified at the GN watershed was then applied to the GS watershed in Mt. Jumbong, which resulted in good agreement for SWC but poor predictability for WBP. Our study showed that RHESSys simulated reliable SWC at the GS by adjusting site-specific porosity only. In contrast, vegetation productivity would require more rigorous site-specific parameterization and hence, further study is necessary to identify primary field ecophysiological variables for enhancing model parameterization and application to multiple watersheds.

A study on calculation of permeable area ratio in impervious basin using K-LIDM model (K-LIDM 모형을 이용한 불투수유역 내 투수면적비 산정에 관한 연구)

  • Park, Jaerock;Kim, Jaemoon;Baek, Jongseok;Seo, Youngjae;Shin, Hyunsuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.969-977
    • /
    • 2022
  • In order to respond to the increase in water disasters due to climate change and urbanization, research on low impact development (LID) techniques and application to cities are expanding. The LID technique is a technology that reduces rainwater runoff in the city, controls various water disasters such as flash floods, etc. in an eco-friendly way, and restores the urban water circulation system to a natural water circulation system. However, quantitative analysis of stormwater runoff reduction through the LID technique is insufficient. Therefore, this study analyzed the ratio of the permeable area required to reduce the surface runoff of rainfall (25 mm/hr, 50 mm/hr, 100 mm/hr) with respect to the impervious watershed area of the old city using the permeable pavement. As a result of the analysis, it was found that a permeable area ratio of 7.14 to 12.63% of the total area was required for 25 mm/hr, 15.79 to 26.97% for 50 mm/hr, and 30 to 55.81% for 100 mm/hr.

International and domestic research trends in longitudinal connectivity evaluations of aquatic ecosystems, and the applicability analysis of fish-based models (수생태계 종적 연결성 평가를 위한 국내외 연구 현황 및 어류기반 종적 연속성 평가모델 적용성 분석)

  • Kim, Ji Yoon;Kim, Jai-Gu;Bae, Dae-Yeul;Kim, Hye-Jin;Kim, Jeong-Eun;Lee, Ho-Seong;Lim, Jun-Young;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.634-649
    • /
    • 2020
  • Recently, stream longitudinal connectivity has been a topic of investigation due to the frequent disconnections and the impact of aquatic ecosystems caused by the construction of small and medium-sized weirs and various artificial structures (fishways) directly influencing the stream ecosystem health. In this study, the international and domestic research trends of the longitudinal connectivity in aquatic ecosystems were evaluated and the applicability of fish-based longitudinal connectivity models used in developed countries was analyzed. For these purposes, we analyzed the current status of research on longitudinal connectivity and structural problems, fish monitoring methodology, monitoring approaches, longitudinal disconnectivity of fish movement, and biodiversity. In addition, we analyzed the current status and some technical limitations of physical habitat suitability evaluation, ecology-based water flow, eco-hydrological modeling for fish habitat connectivity, and the s/w program development for agent-based model. Numerous references, data, and various reports were examined to identify worldwide longitudinal stream connectivity evaluation models in European and non-European countries. The international approaches to longitudinal connectivity evaluations were categorized into five phases including 1) an approach integrating fish community and artificial structure surveys (two types input variables), 2) field monitoring approaches, 3) a stream geomorphological approach, 4) an artificial structure-based DB analytical approach, and 5) other approaches. the overall evaluation of survey methodologies and applicability for longitudinal stream connectivity suggested that the ICE model (Information sur la Continuite Ecologique) and the ICF model (Index de Connectivitat Fluvial), widely used in European countries, were appropriate for the application of longitudinal connectivity evaluations in Korean streams.