• Title/Summary/Keyword: Eco-friendly transportation

Search Result 164, Processing Time 0.026 seconds

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

Effects of Persuader and Persuasion Message of Bicycle Exploration Journey (자전거 탐방여행의 설득원과 설득메시지의 효과)

  • Park, Joung-Koo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.5
    • /
    • pp.13-23
    • /
    • 2009
  • This study investigated the effects of thae persuader and the persuasion message in order to reduce carbon dioxide emissions and activate the exploration journey using bicycles, a form of green transportation, in this green society age. Furthermore, the effects that predictive variables related to the implementation of an infrastructure for bicycles have on the intentions toward an exploration journey using bicycles were examined. The questionnaire survey was administered to 257 respondents for 9 days from March 14 to March 22, 2009. Since Gyeongju has a number of cultural relics that people can look at in one day, Gyeongju is ideal for examining a variety of tourist opinions about exploring cultural relics using bicycles. In conclusion, it was found that the 'persuader' and 'persuasion message' enhanced the desire for bicycle exploration journeys from 'will use a bicycle if possible' to 'want to use a bicycle'. In accordance with two-way ANOVA results on the desire for bicycle exploration journeys by persuader and persuasion message, the persuasion approach emphasizing health effects and geared toward bicycle enthusiasts was significantly effective. Furthermore, the most effective approach was the persuasion strategy emphasizing the 'citizens' and 'health', and 'citizens' and 'eco-friendly' among the effects created by connection of persuader and persuasion message.

A Study on the Gas Generative Properties for the Developments of Small Brown Gas Generation Equipments Usable in Diesel Cars (디젤자동차 용 소형 브라운가스 발생장치의 개발을 위한 가스 생성 특성에 관한 연구)

  • Kim, Joohwi;An, Hyunghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.34-39
    • /
    • 2016
  • This study is experimentally investigated brown gas generative properties with the changes of cell areas, a electrolyte concentration and ampere current for the developments of small brown gas generation equipments usable in diesel cars. Electrolysis reactors have been manufactured as SMT30, SMT50, SMT50-1, SMT70, SMT90, respectively on various surface areas and different positions anode and cathode. Thus, the brown gas generative properties on reactors tended to increase as surface area increase, and show differences in different electrode positions. However, the effect on electrolyte concentration had increased with a decreasing electrolyte concentration of NAOH 3~1‰, and the brown gas generative properties on ampere of SMT30, SMT50, SMT50-1, SMT70, SMT90 have shown to be $0.74{\ell}/10min$, $1.0{\ell}/10min$, $1.10,{\ell}/10min$, $0.97{\ell}/10min$, $1.13{\ell}/10min$.

Micro-scale Public Transport Accessibility by Stations - KTX Seoul Station Case Study - (정류장 단위의 미시적 대중교통 접근성 분석 - KTX 서울역 사례연구 -)

  • Choi, Seung U;Jun, Chul Min;Cho, Seong Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • As the need of eco-friendly transportation systems for sustainable development increases, public transport accessibility has been considered as an important element of transportation system design. When analyzing the accessibility, shortest path algorithms can be utilized to reflect the actual movement and we can obtain high resolution accessibility for all other stations on the network with shortest distance and time. This study used the algorithm improved by reflecting the penalty of number of transfers and waiting time of overlapped routes to get the accessibility. KTX Seoul Station is a target place and this algorithm is applied to multi-layer subway bus network of Seoul to calculate the accessibility, therefore this study presented the accessibility of KTX Seoul station by stations.

Recent advances in natural gas hydrate carriers for gas transportation - A review and conceptual design

  • Kim, Kipyoung;Kim, Youtaek;Kang, Hokeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.589-601
    • /
    • 2014
  • Natural gas hydrate (NGH) is emerging as a new eco-friendly source of energy to replace fossil fuels in the 21st century. It is well known that the Natural Gas Hydrate contains large amount of natural gas about 170 times as much as its volume and it is easy to be stored and transported safely at about $-20^{\circ}C$ under atmospheric pressure due to so called "self-preservation effect". The option of gas transport by gas hydrate pellets carrier has been investigated and developed in various industry and academy. The natural gas hydrate pellet carrier is on major link in a potential gas hydrate process chain, starting with the extraction of natural gas from the reservoir, followed by the production of hydrate pellets and the transportation to an onshore terminal for further processing or marketing. In recent years, Korean project team supported by Korean Government has been working on the development of NGH total systems including novel NGH carrier since 2011. In order to increase the knowledge on the NGH pellet carrier developed and to understand the major hazards that could have significant impact on the safety of the vessel, this paper presents and evaluates the pros and cons of cargo holds, loading and unloading systems through the analysis of current patent technology. Based on the proven and well-known technologies as well as potential measures to mitigate sintering and minimize mechanical stress on the hydrate pellet in the self-preservation state, this study presents the conceptual and basic design for NGH carrier.

Tribological Properties of Ceramic Composite Friction Materials Reinforced by Carbon Fibers (탄소섬유가 혼합된 세라믹 복합재 제동마찰재의 마찰·마모 특성)

  • Goo, Byeong-Choon;Kim, Min-Soo
    • Tribology and Lubricants
    • /
    • v.33 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Because the running speed of vehicles is increasing and a shorter braking distance is required, high heat-resistant brake pads are needed to satisfy the requirements of customers and car makers. In the near future, hazardous materials such as Cu, Cr, Zn, and Sb will be restricted from use in friction materials. Ceramic composites reinforced by carbon fibers are good candidates for eco-friendly friction materials. In this study, we develop ceramic composite friction materials. The friction materials are composed of carbon fibers, Si, SiC, graphite, and phenol resin and are prepared by hot forming and heat treatment at high temperatures. The density, void ratio, and compressive strength are $1.59-1.66g/cm^3$, 16.6-20, and 70-90 MPa, respectively. Friction and wear tests are performed using a pin-on-plate-type reciprocating friction tester at 25, 100, and $200^{\circ}C$. The counterpart material is a CrMoV steel extracted from a KTX brake disc. Friction coefficient, wear amount, and wear mechanism are measured and examined. We determine that the friction coefficients depend on the temperature and the fluctuation of the friction coefficients is larger at higher temperatures. The amount of wear increases with the surface temperatures of the specimens. The tribological properties of the developed composites are similar to those of a Cu-based sintered friction material. Through this study, it is confirmed that ceramic composite materials can be used as friction materials.

Study on Performance of pH Reducing Agent Applied for Wet Process of Recycled Aggregate (습식 순환골재의 생산공정에 적용 가능한 pH 저감제의 성능 검토)

  • Choi, Jung-Gu;Lee, Gun-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.366-373
    • /
    • 2015
  • Construction waste is recycled and used for the efficient and eco-friendly disposal of construction waste increasing due to reconstruction and redevelopment project and so on. There is recycled aggregate as a typical case. And this recycled aggregate shows strong alkalinity due to calcium hydroxide, and causes many environmental problems. Therefore, this is a study on reduction in the strong alkalinity of recycled aggregate by using sodium phosphate based ammonium in order to reduce the pH of recycled aggregate. Besides, a possibility that a pH reducing agent of recycled aggregate could be applied to a site was evaluated. As a result, it was possible to verify that pH decreased as the percentage of pH reducing agent increased. It is thought that the pH reducing agent can be applied to a site by methods such as immersion and spray using the pH reducing agent in the process of producing recycled aggregates.

Forecasting of Inspection Demand for Pressure Vessels in Hydrogen Fuel Cell Electric Vehicle using Bass Diffusion Model (Bass 확산모델을 이용한 수소전기차 내압용기 검사수요 예측)

  • Kim, Ji-Yu;Kim, Eui-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.16-26
    • /
    • 2021
  • The global warming problem has arose, the supply eco-friendly vehicles such as HFCEVs is increasing around world and Korea is fully supporting subsidies, tax cut to form an initial market for HFCEVs. The key to the safety of HFCEVs is pressure vessels stored hydrogen, and although these pressure vessels must be inspection regularly, the existing inspection stations are insufficient to meet the demand for inspection. Therefore, it is important to establishment of pressure vessels inspection station for safety management of HFCEVs. In this study, it estimates innovation coefficient, imitation coefficient in Bass model by using electric vehicle sales data, and foretasted the supply of HFCEVs by region & the demand for inspection by region using the Bass diffusion model. As a result, the inspection demand for pressure vessels in HFCEVs in 2040 was 690,759 units, and it was confirmed 191 new inspection stations and 1,124 inspectors were needed to prepare for this.

Implementation of Low-priced Bicycle Black Box Using 6-axis Sensor (6축 센서를 이용한 저가형 자전거 블랙박스 구현)

  • Weon, La-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.171-182
    • /
    • 2019
  • Bicycles are a pollution-free means of transportation. In addition to leisure, the use of bicycles is increasing as alternative eco-friendly transportation. Accordingly, bicycle accidents are also increasing. The purpose of this study is to implement bicycle black box technology to identify situation when a bicycle accident occurs. Currently, bicycle black box products are mainly based on video cameras, and are commercially available by adding various functions mainly on high resolution cameras and are sold at high prices. If a bicycle accident occurs, quantitative data on the accident location at the time of the accident and the state of the bicycle at the time of the accident is required. In this study, IMU sensor used to obtain acceleration and slope, and time and coordinates are obtained. In addition, real-time acceleration and tilt data while is stored in memory card and by using Bluetooth transmit to the smart phone owned by the in real time to prevent accidents and to monitor status.

Fabrication of nanoporous ceramic membrane for water treatment (수처리용 나노스케일 다공성 세라믹 멤브레인 제조)

  • Han, Hyuk Su;Lee, Ho Jun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.77-81
    • /
    • 2019
  • Recently, as the problem of environmental pollution emerges, various methods of eco-friendly water treatment method are being developed. Polymer membranes, which are currently leading the market, are inexpensive, but have many problems in terms of chemical resistance and durability. Thus, ceramic membrane has been attracted great attention as high-efficiency water treatment due to excellent durability and chemical resistant. In this study, ceramic membranes were developed via pore structure, size control, and surface treatment. The pore size of the membrane was controlled through the formation of $ZrO_2$ and $TiO_2$ coating films. Tape casting and sol-gel process were used to form a ceramic coating film with nanopores on the surface of the membrane. Microstructure analysis of ceramic membrane and pore size analysis of the coating film were conducted and the change of water treatment characteristics was observed.