• Title/Summary/Keyword: Eco-friendly surface treatment

Search Result 58, Processing Time 0.023 seconds

Enzymatic Modification of Wool/Polyester Blend Fabrics Using Lipase from Aspergillus Oryzae (리파제에 의한 양모/폴리에스터 혼방직물의 동시 개질)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.7
    • /
    • pp.1121-1127
    • /
    • 2009
  • This study presents an eco-friendly and one-step finishing method for modifying fiber property that reduces fiber damage in wool/polyester blend fabrics. Lipase from aspergillus oryzae is used in this experiment. The enzymatic treatment condition is optimized by measuring the relative activity of lipase depending on pH level, temperature, concentration of lipase, and treatment time. The concentration of $CaCl_2$as an activator is determined by the characteristics including whiteness, water contact angle (WCA), and dyeing property. The modified properties of lipase treated fabrics are tested for pill resistance and surface morphology. The results are described as follows: the optimum condions for lipase treatment constitute a pH level of 8.0, treatment temperature of 40$^{\circ}$$_C$, concentration of lipase at 100% (o.w.f), and a treatment time of 90 minutes. $CaCl_2$helps in raising lipase activation, and the optimum concentration is 50mM. The whiteness, wet ability, and pill resistance of lipase treated fabrics improves as compared to the control. The dyeing property of lipase treated fabrics improved by 53.5% after using the one-bath dyeing method. This means that lipase treatment can save time and cost during the dyeing process since lipase treatment modifies wool and polyester fibers. The surface of lipase treated wool fibers do not exhibit any change, however voids and cracks manifest on the surface of lipase treated polyester fibers.

The Effect of L-cysteine, EDTA in Papain Treatment of Wool Fabrics (양모직물에 파파인 처리 시 L-cysteine, EDTA의 영향)

  • Sung, Jong-Mi;Song, Wha-Soon;Kim, In-Young
    • Textile Coloration and Finishing
    • /
    • v.20 no.2
    • /
    • pp.9-18
    • /
    • 2008
  • Wool has excellent properties, such as heat retention, absorbency, and elasticity, but it has a disadvantage in washability because the fabric will felt and shrink greatly. Felting causes the interlocking of the fiber surface scales with one another. Therefore, the studies on wool finishing have been focused on shrink proofing. Precedent researches on wool shrink proofing are mostly on eco-friendly method. using enzyme. The purpose of this study is to examine the effect of L-cysteine, EDTA in papain treatment of wool fabrics. The specific contents of study are as follows. Depending on pH, temperature, treatment time, enzyme concentration and L-cysteine, EDTA concentration, weight loss, tensile strength, whiteness, SEM were examined. Each papain treatment conditions depending on L-cysteine, EDTA were optimized from these properties. Papain had very low activation without activators. The optimum conditions of papain treatment were pH 7.5, temperature $75^{\circ}C$, time 30minutes(L-cysteine), 180minutes(EDTA) and papain concentration 5%(o.w.f.). In the use of papain 5%(o.w.f.), the activators optimum concentration was L-cysteine 2%(o.w.f.), EDTA 7%(o.w.f.)

Application of surface modified sericite to remove anionic dye from an aqueous solution

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • The treatment of dyeing wastewater is not easy because dyes are mainly aromatic, heterocyclic compounds. The most effective technologies and methods to treat dyeing wastewater are costly and involve materials that are difficult to regenerate after use. Therefore, it is necessary to develop cost-effective, eco-friendly technologies to treat dyeing wastewater. The aim of this study was to investigate the removal of sulfur blue 11 (CI 53235) anionic dye using methyl esterified sericite (ME-sericite) adsorbents in an aqueous solution. The results are discussed in terms of the ME-sericite particle size, temperature, pH value and initial sorption rate according to the initial sulfur blue concentration. In addition, we analyzed the adsorption kinetics using a Pseudo-second-order model with the desorption and reusability. The methyl esterification caused a considerable increase in the specific surface area from 4.45 to $17.62m^2/g$. The ME-sericite adsorbents successfully removed > 98% of the sulfur dye in the aqueous solution. For the adsorption of 1 mg of sulfur dye, approximately 4.6 to 6.6 g/L ME-sericite were required. The desorption process was carried out by mixing a NaOH eluent to desorb 90.56% of the sulfur dye with 2 h of contact time. Thus, the ME-sericite is a promising adsorbent to treat dyeing wastewater due to its low dose requirement, high removal efficiency and inexpensive material.

Development of Controlled Gas Nitriding Furnace(III) : Application of Controlled Gas Nitriding Process and Evaluation of Durability for SCR420H Annulus gear (질화포텐셜 제어 가스질화로 개발(III) : SCR420H 에널러스기어에 대한 제어질화 적용 및 내구성 평가)

  • Won-Beom Lee;Minjae Jung;Min-Sang Kwon;Taehwan Kim;Chulwoo Moon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.161-173
    • /
    • 2023
  • This study investigated the effects of KN and process time on the formation of a compound layer at a nitriding temperature of 540℃ for SCR420H material. As a result of controlled nitriding from 3 h to 20 h at KN 1.2 atm-1/2, compound layers were formed up to about 10 ㎛, and an effective hardening depth of about 460 ㎛ was obtained. Initially, an ε+γ' complex phase was formed, and the phase fraction changed over time, and finally, the fraction of ε phase decreased to less than 1%. With higher KN, the compound thickness increased, a pore layer was formed on the surface, and the surface hardness decreased. By applying the controlled nitriding process, it was possible to produce annulus gears with a compound thickness of 12.8 ㎛ and an ε phase of 5% or less. The annulus gears made through controlled nitriding were mounted on a 6-speed transmission and tested for durability. As a result, the durability test of 250,000 km was satisfied, and the transmission efficiency was also confirmed to be expected.

Fabrication of Humidity Control Ceramics from Drinking-Water Treatment Sludge and Onggi Soil

  • Lee, Min-Jin;Lee, Hyeon-Jun;Kim, Kyungsun;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.362-366
    • /
    • 2016
  • In this study, humidity control ceramics with good adsorption/desorption capabilities and high strength were fabricated from drinking-water treatment sludge (DWTS) and Onggi soil. The DWTS powder heat-treated at $800^{\circ}C$ and Onggi soil were mixed at weight ratios of 40:60, 50:50, 60:40, and 70:30 and fired at $800-1000^{\circ}C$. With increasing DWTS content, density and flexural strength increased. For the sample with a DWTS:Onggi soil weight ratio of 70:30, porosity and specific surface area decreased with increasing firing temperature, attributed to densification and grain growth at high firing temperatures. From the results obtained, a firing temperature of $800^{\circ}C$ is the optimum condition for fabricating humidity control ceramics with good adsorption/desorption capabilities and strength. The maximum adsorbed amount for the sample fired at $800^{\circ}C$ was $439g/m^2$.

Fabrication of nanoporous ceramic membrane for water treatment (수처리용 나노스케일 다공성 세라믹 멤브레인 제조)

  • Han, Hyuk Su;Lee, Ho Jun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.77-81
    • /
    • 2019
  • Recently, as the problem of environmental pollution emerges, various methods of eco-friendly water treatment method are being developed. Polymer membranes, which are currently leading the market, are inexpensive, but have many problems in terms of chemical resistance and durability. Thus, ceramic membrane has been attracted great attention as high-efficiency water treatment due to excellent durability and chemical resistant. In this study, ceramic membranes were developed via pore structure, size control, and surface treatment. The pore size of the membrane was controlled through the formation of $ZrO_2$ and $TiO_2$ coating films. Tape casting and sol-gel process were used to form a ceramic coating film with nanopores on the surface of the membrane. Microstructure analysis of ceramic membrane and pore size analysis of the coating film were conducted and the change of water treatment characteristics was observed.

Investigation of Changes in Structural Characteristics and Chemical Composition after Heat Treatment Process of JIS-SUJ2 Bearing Steel (JIS-SUJ2 베어링강의 열처리 이후 표면 및 심부에서 나타나는 구조적, 화학적 물성 변화)

  • Donghee Lee;Kyun Taek Cho;Hyeonmin Yim;Seung-Hwan Oh;Tae Bum Kim;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.558-564
    • /
    • 2023
  • In this study, we designed and manufactured a large angular contact ball bearing (LACBB) with low deformation using JIS-SUJ2 steel and analyzed changes in its structural characteristics and chemical composition upon heat treatment. The bearing was produced by hot forging and heat treatment including a quenching and tempering (Q/T) process, and its properties were analyzed using 4 mm thick specimens. A difference in the size distribution of the carbide in the outer and inner parts of the bearing was observed and it was confirmed that large and non-uniform carbide was distributed in the inner part of the bearing. After heat treatment, the hardness value of the outer part increased from 13.4 HRC to 61 HRC and the inner part increased from 8.0 HRC to 59.7 HRC. As a result of X-ray diffraction (XRD) measurements, the volume fraction of the retained austenite contained in the outer part was calculated to be 3.5~4.8 % and the inner part was calculated to be 3.6~5.0 %. The surface chemical composition and the content of chemical bonds were quantified through X-ray photoelectron spectroscopy (XPS), and a decrease in C=C bonds and an increase in Fe-C bonds were confirmed.

Effects of Green Tea Residue Treatment in Eco-Friendly Medium on Growth and Catechin Content of Pleurotus eryngii (친환경 버섯배지에 녹차 잔류물의 처리가 새송이버섯의 생장 및 Catechin류 함량에 미치는 영향)

  • Chon, Sang-Uk;Kim, Young-Min;Yun, Dae-Ryung
    • Korean Journal of Plant Resources
    • /
    • v.20 no.1
    • /
    • pp.38-42
    • /
    • 2007
  • The present study was conducted to investigate the translocation of polyphenols, especially catechin derivatives, from mushroom medium mixed with green tea residues into fruiting body of Pleurotus eryngii. Pleurotus eryngii was grown on the media incorporated by mixing or surface-treated with dry materials including leaf petioles and young stems or leaves of green tea. The dry materials treated in medium did not affect plant height and fresh weight of Pleurotus eryngii body. From the samples of Pleurotus eryngii, the eight main catechin derivatives (-)-gallocatechin(GC), (+)-catechin (C), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epigallocatechin gallate (EGCG), (-)-gallocatechin gallate (GCG), (-)-epicatechin gallate (ECG), and (-)-catechin gallate (EGCG), and caffeine were analyzed quantitatively by HPLC. The results showed that EGC in Pleurotus eryngii was 45% more detected, when incorporated with the dry materials, than untreated control. Especially, content of EGCG was increased in surface-treated Pleurotus eryngii up to 3.2 ppm, while it was not detected or reduced in control and other treatments. Caffeine content was greatly increased regardless of treatment method, compared with control (0.1ppm), showing 44 fold-amount in Pleurotus eryngii at early growth stage when incorporated with the dry materials into medium. The results indicates that functional catechin derivatives of green tea would be partly translocated into Pleurotus eryngii throught incorporation and surface treatment with residues of green tea plants.

Heat Treatment Deformation Analysis of Bearing Considering Phase Transformation (상변태를 고려한 베어링의 열처리 변형 해석)

  • S.P. Lee;S.J. Lee;T.B. Kim;K.T. Cho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.351-358
    • /
    • 2023
  • Bearings are mechanical components that support loads and transmit rotation. The inner and outer rings come into contact with the rotating mechanism, requiring a very high level of hardness. To meet this requirement, heat treatment is commonly performed. The heat treatment process inherently involves thermal deformation. Particularly in the case of large bearings, significant deformation relative to the bearing's shape can occur, making accurate deformation prediction during heat treatment essential. However, predicting deformation in heat treatment is challenging due to the simultaneous consideration of phase transformation, heat transfer, and bearing deformation. In this study, an analysis of heat treatment-induced deformation in bearings was conducted, taking phase transformation into account. The thermal and mechanical properties were calculated based on the chemical composition of the bearing material. This information was then used to perform a deformation-heat transfer-phase transformation analysis. To validate the reliability of the analysis, experiments were conducted under the same conditions. When comparing the analysis and experimental results, differences in deformation were observed. These differences were attributed to variations in phase transformation conditions between the analysis and experiments. Consequently, it is anticipated that supplementing these results will enable the prediction of deformation while considering phase transformation conditions in bearings.

Development of a Returnable Folding Plastic Box RFID Module for Agricultural Logistics using Energy Harvesting Technology (에너지 하베스팅 기술을 활용한 농산물 물류용 리턴어블 접이식 플라스틱 상자 RFID 모듈 개발)

  • Jong-Min Park;Hyun-Mo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.223-228
    • /
    • 2023
  • Sustainable energy supplies without the recharging and replacement of the charge storage device have become increasingly important. Among various energy harvesters, the triboelectric nanogenerator (TENG) has attracted considerable attention due to its high instantaneous output power, broad selection of available materials, eco-friendly and inexpensive fabrication process, and various working modes customized for target applications. In this study, the amount of voltage and current generated was measured by applying the PSD profile random vibration test of the electronic vibration tester and ISTA 3A according to the time of Anodized Aluminum Oxide (AAO) pore widening of the manufactured TENG device Teflon and AAO. The discharge and charging tests of the integrated module during the random simulated transport environment and the recognition distance of RFID were measured while agricultural products (onion) were loaded into the returnable folding plastic box. As a result, it was found that AAO alumina etching processing time to maximize TENG performance was optimal at 31 min in terms of voltage and current generation, and the integrated module applied with the TENG module showed a charging effect even during the continuous use of RFID, so the voltage was kept constant without discharge. In addition, the RFID recognition distance of the integrated module was measured as a maximum of 1.4 m. Therefore, it was found that the surface condition of AAO, a TENG element, has a great influence on the power generation of the integrated module, and due to the characteristics of TENG, the power generation increases as the surface dries, so it is judged that the power generation can be increased if the surface drying treatment (ozone treatment, etc.) of AAO is applied in the future.