• 제목/요약/키워드: Eco-friendly material

검색결과 558건 처리시간 0.029초

질화포텐셜 제어 가스질화로 개발(III) : SCR420H 에널러스기어에 대한 제어질화 적용 및 내구성 평가 (Development of Controlled Gas Nitriding Furnace(III) : Application of Controlled Gas Nitriding Process and Evaluation of Durability for SCR420H Annulus gear)

  • 이원범;정민재;권민상;김태환;문철우
    • 열처리공학회지
    • /
    • 제36권3호
    • /
    • pp.161-173
    • /
    • 2023
  • This study investigated the effects of KN and process time on the formation of a compound layer at a nitriding temperature of 540℃ for SCR420H material. As a result of controlled nitriding from 3 h to 20 h at KN 1.2 atm-1/2, compound layers were formed up to about 10 ㎛, and an effective hardening depth of about 460 ㎛ was obtained. Initially, an ε+γ' complex phase was formed, and the phase fraction changed over time, and finally, the fraction of ε phase decreased to less than 1%. With higher KN, the compound thickness increased, a pore layer was formed on the surface, and the surface hardness decreased. By applying the controlled nitriding process, it was possible to produce annulus gears with a compound thickness of 12.8 ㎛ and an ε phase of 5% or less. The annulus gears made through controlled nitriding were mounted on a 6-speed transmission and tested for durability. As a result, the durability test of 250,000 km was satisfied, and the transmission efficiency was also confirmed to be expected.

나노셀룰로오스 기반 고분자 복합소재의 특성 및 응용 (Nanocellulose-based Polymer Composites with Their Properties and Applications)

  • 김세훈;권영제;야미니 샬마;손민영;조상호;백경열;조계용
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.221-225
    • /
    • 2023
  • 셀룰로오스는 자연의 다양한 공급원에서 쉽게 얻을 수 있는 가장 일반적인 천연 고분자이다. 셀룰로오스의 한 형태인 나노셀룰로오스는 셀룰로오스를 처리해 쉽게 얻을 수 있으며, 그 고유 물성이 상당히 우수하여 광범위한 산업 응용 분야에 사용이 가능하다. 이러한 나노 셀룰로오스는 금속 및 세라믹 필러를 포함하는 고분자 복합재료를 능가하는 뛰어난 기계적 물성 및 열적 안정성을 제공하며, 지속가능한 환경 친화적인 복합소재이다. 이러한 특성을 기반으로 필러, 포장지, 에너지, 의료, 코팅산업 등 다양한 분야에서 광범위하게 연구되고 있다. 본 리뷰에서는 나노셀룰로오스 및 나노복합소재 개발 그리고 응용분야에 대한 연구동향에 대해 고찰해보았다.

지속 가능 패션 디자인의 이미지 요소에 관한 연구 - 업사이클링 가방 상품 중심으로 - (A Study on the Image Elements of Sustainable Fashion Design - Focusing on up-cycling bags products -)

  • 유흔;정재윤
    • 한국의상디자인학회지
    • /
    • 제25권2호
    • /
    • pp.1-16
    • /
    • 2023
  • Due to the current seriousness of environmental pollution and the eco-friendly movement of the fashion industry, research on sustainable fashion design is being actively conducted. In this study, consumer perception of upcycling products, are divided into image, function, and meaning; and image is further divided into shape, color, and material. It was redefined as pattern, and image recognition was evaluated among men and women in their 20s and 30s, and men and women in their 40s and 50s used as subjects. First, factors that determine each image were extracted based on qualitative analysis of the precedent cases of upcycling bags, and quantitative analysis of the subjects was induced through a questionnaire. As a result of the analysis of evaluation items related to image association, the average frequency analysis of all subjects for each stimuli and the cognitive variance of the frequency analysis by generation by gender were found to be similar. However, awareness of some stimuli by generation showed a significant difference. Overall, in the three stimuli with high overall preference, common features, such as the basic box-shaped symmetrical structure, the monochromatic color of the Munsell system, solid and practical texture, and appropriate use of patterns were identified. In addition, it was confirmed that there was a difference with factors such as femininity, simplicity, touch, and splendor in the measurement factors. In conclusion, it is considered that the main significance of this study is that it excluded the recognition and meaning of upcycling products and explored the original design and image elements of products. Therefore, it is expected that this study will be used as a basic data for responding to the gender image of each generation as an alternative method of sustainable fashion design, and it will be an opportunity to expand the scope of the study to a detailed study beyond the biased topic.

COVID-19에 의한 한국 청소년의 식생활 행태와 라이프스타일의 변화 (Changes in Dietary Behavior and Lifestyle of Korean Adolescents by COVID-19)

  • 서보영;허은실
    • 한국산업융합학회 논문집
    • /
    • 제26권5호
    • /
    • pp.793-802
    • /
    • 2023
  • The aim of this study analyzed changes in dietary habits and lifestyles before and after COVID-19 targeting adolescents, using the food consumption behavior survey (2019 vs 2021). In the change in health-related factors, height decreased overall, and a significant difference was especially evident in males. Awareness that functional foods and eco-friendly foods contribute to health has increased. Among the results of dietary behavior, the frequency of skipping breakfast showed that the rate of not skipping breakfast and the rate of skipping breakfast more than 5 times increased at the same time(p=0.019). The rate of eating out decreased significantly after COVID-19, and it was analyzed that schools and school cafeteria, as well as Street carts or restaurants and academy, all increased significantly as places where snacks were not consumed. In order to analyze changes in food-related lifestyle, it was grouped into convenience-seeking, quality/safety-seeking, taste-seeking, and health/safety-seeking. 'Small packaged or pre-processed products' decreased. On the other hand, items such as 'Safety rather than price when choosing food' and 'Don't eat food that could go bad' improved. 'Tend to eat regularly' was higher than 2021 compared to 2019. Also 'Tend to purchase HACCP and GAP-certified products' are increased. Because of COVID-19 changes in lifestyle have affected the diet of adolescents. The results of this study suggest that it can be used as a guideline establishment and nutrition counseling material for the formation of correct eating habits for adolescents in the future pandemic era.

상변태를 고려한 베어링의 열처리 변형 해석 (Heat Treatment Deformation Analysis of Bearing Considering Phase Transformation)

  • 이승표;이석재;김태범;조균택
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.351-358
    • /
    • 2023
  • Bearings are mechanical components that support loads and transmit rotation. The inner and outer rings come into contact with the rotating mechanism, requiring a very high level of hardness. To meet this requirement, heat treatment is commonly performed. The heat treatment process inherently involves thermal deformation. Particularly in the case of large bearings, significant deformation relative to the bearing's shape can occur, making accurate deformation prediction during heat treatment essential. However, predicting deformation in heat treatment is challenging due to the simultaneous consideration of phase transformation, heat transfer, and bearing deformation. In this study, an analysis of heat treatment-induced deformation in bearings was conducted, taking phase transformation into account. The thermal and mechanical properties were calculated based on the chemical composition of the bearing material. This information was then used to perform a deformation-heat transfer-phase transformation analysis. To validate the reliability of the analysis, experiments were conducted under the same conditions. When comparing the analysis and experimental results, differences in deformation were observed. These differences were attributed to variations in phase transformation conditions between the analysis and experiments. Consequently, it is anticipated that supplementing these results will enable the prediction of deformation while considering phase transformation conditions in bearings.

Effects of application rate and pH of carbonized rice husk on the reduction of NH3 volatilization and soil quality

  • Yun-Gu Kang;Jae-Han Lee;Jun-Yeong Lee;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제50권2호
    • /
    • pp.231-239
    • /
    • 2023
  • Ammonia (NH3) emitted from the use of fertilizers during agricultural practice generates particulate matter and odors. The application of carbonized rice husk, an eco-friendly material, is one of the measures used to reduce NH3. The objective of this study was to evaluate the effect of the application rate and pH of carbonized rice husk on NH3 emissions and soil quality. An experiment to assess NH3 emissions was performed in a glasshouse using a static chamber method. The pH of the carbonized rice husk was divided into acidic, neutral, and basic groups, and the carbonized rice husk application rates were 1, 3, and 5% of the soil weight. NH3 emissions showed a sharp increase within three days after the inorganic fertilizer was applied. Subsequently, NH3 emissions decreased rapidly after basal fertilization compared to primary and secondary top-dressing. When carbonized rice husks were applied to soil, NH3 emissions decreased in all treatments, and neutral carbonized rice husk was the most effective in comparison with acidic and basic carbonized rice husk. The application rate of carbonized rice husk and NH3 emissions showed a negative correlation, and the lowest emissions were found in units with a 5% application rate. Also, there was no statistically significant difference between NH3 emissions according to the application rate of carbonized rice husk, and when carbonized rice husks were applied at a 5% rate, soil OM increased excessively. Therefore, it is recommended to apply only 1% neutral carbonized rice husk to most effectively reduce NH3 emissions in the soil.

Physical and electrical properties of PLA-carbon composites

  • Kang Z. Khor;Cheow K. Yeoh;Pei L. Teh;Thangarajan Mathanesh;Wee C. Wong
    • Advances in materials Research
    • /
    • 제13권3호
    • /
    • pp.211-220
    • /
    • 2024
  • Polylactic acid or polylactide (PLA) is a biodegradable thermoplastic that can be produced from renewable material to create various components for industrial purposes. In 3D printing technology, PLA is used due to its good mechanical, electrical, printing properties, environmentally friendly and non-toxic properties. However, the physical properties and excellent electrical insulation properties of PLA have limited its application. In this study, with the carbon black (CB) as filler added into PLA, the lattice spacing and morphology were investigated by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The physical properties of PLA-carbon composite were evaluated by using tensile test, shore D hardness test and density and voids measurement. Impedance test was conducted to investigate the electrical properties of PLA-Carbon composites. The results demonstrate that the inclusion of carbon black as filler enhances the physical properties of the PLA-carbon composites, including tensile properties, hardness, and density. The addition of carbon black also leads to improved electrical conductivity of the composites. Better enhancement toward the electrical properties of PLA-carbon composites is observed with 1wt% of carbon black in N774 grade. The N550 grade with 2wt% of carbon black shows better improvement in the physical properties of PLA-carbon composites, achieving 10.686 MPa in tensile testing, 43.330 in shore D hardness test, and a density of 1.200 g/cm3 in density measurement. The findings suggest that PLA-carbon composites have the potential for enhanced performance in various industrial applications, particularly in sectors requiring improved physical and electrical properties.

미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조 (Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch)

  • 심규락;염수진;정성근;강경구;이창수
    • 청정기술
    • /
    • 제24권2호
    • /
    • pp.105-111
    • /
    • 2018
  • 본 연구는 입자 내에서 패치의 위치를 정교하게 제어할 수 있는 새로운 친환경 공정기술에 관한 것이다. 물리화학적으로 안정한 소재를 활용한 미세성형 기술과 패치의 위치를 제어할 수 있는 선택적 제거방법을 결합하여 수행하였다. 미세성형 기술에는 이방성 구조의 패치입자의 형상을 안정적으로 구현하기 위하여, perfluoropolyether (PFPE) 마이크로몰드를 사용하였다. 이를 통하여, 소수성의 패치소재가 poly(dimethylsiloxane) (PDMS) 마이크로몰드 내로 확산되는 문제를 극복할 수 있었다. 그리고, 이는 패치의 우수한 형상 안정성과 소수성 패치소재를 이용한 패치입자 제조를 가능하게 하였다. 마지막으로 패치의 위치가 서로 다른 12종의 패치입자를 제조하여 향상된 공정 안정성을 확인하였다. 본 연구에서 제시한 미세성형 기술과 패치의 선택적 제거방법은 패치의 위치가 선택적으로 제어된 이방성의 입자를 적은 공정의 수를 거쳐 빠르게 제조할 수 있는 장점을 가진다. 또한 제조된 패치입자는 방향성이 유도된 자기조립 분야, 조절이 가능한 약물 전달 시스템 등의 다양한 연구에 널리 활용될 수 있으리라 기대한다.

FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계 (Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation)

  • 최동수;손재용;김진세;김용훈;박천완;정현모;황성욱
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.

은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구 (Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative)

  • 파티 카라데니즈;김한성
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.864-873
    • /
    • 2018
  • 나노 입자는 화장품, 식품, 기계, 화학 산업 등에 다양한 용도로 활용되고 있으며, 그 응용분야가 광범히 하여 나노 입자 사용에 대한 관심과 연구가 지속적으로 증가하고 있는 추세이다. 특히 금속나노 입자 중 하나인 은나노 입자는 항균 및 항진균 효과가 뛰어나 의류, 실내 공기필터, 증류필터 등 다양한 방면에 활용되고 있다. 하지만 은나노 입자의 지속적인 노출 시, 입자 크기와 노출방식에 따라 인체에 독성을 유발하는 것으로 알려져 있어 친환경적이고 생물학적으로 안전한 천연물 유래 소재를 활용한 은나노 입자의 기술개발이 필요하다. 천연물이 적용된 실내필터와 의류는 생산의 용이성, 제품 내구성 및 항균 활성에서 은나노 적용제품과 비교될 수 있는 것으로 나타고 있다. 본 연구에서는 은나노의 생체 내 미치는 독성 메커니즘에 대해 알아보고 은나노의 대안으로 항균 활성을 지닌 천연물의 항균 활성에 대해 기술하고자 한다.