• Title/Summary/Keyword: Echo-sounder

Search Result 187, Processing Time 0.044 seconds

Coastal Topography and Shoreline Change in Gohyun Bay, Geojedo (거제 고현만 주변해역의 지형 및 해안선 변화 특성)

  • Kim Jong-Kyu;Kim Myong-Won;Lee Moon-Ock;Lee Yeon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.137-142
    • /
    • 2004
  • There has been considerable controversy over the change of coastal topography and shoreline by coastal erosion in Gohyun Bay, Geojedo. In this study, we analyzed aerial photographs and surveyed coastal topography and shoreline. Changes between years were identified using a GIS overlay analysis and field surveys with DGPS, Total Station and Echo Sounder. As a result, we were able to identify changes by coastal erosion in the area of Gohyun Bay, Geojedo.

  • PDF

Calculation on Pure Sediment Volume at Namgang Dam Basin by Echo-sounder based on NTRIP Service (NTRIP 기반 음향측심기를 이용한 남강댐 유역의 순퇴적량 산정)

  • Lee, Suk-Bae;Kim, Ki-Heung;Park, Jae-Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.251-257
    • /
    • 2013
  • Bathymetry sounding or water depth measurement is becoming more and more sophisticated with the increasing demand in accuracy, resolution and coverage in the recent years. Single beam echo sounding is still utilized to gather single line bathymetric profile in many surveys as ever, although there is an increasing demand for multi-beam echo sounding. Single beam echo sounder system acquires single line profiles of water depth as the vessel travel along the survey line. In this study, we performed single beam echo sounding with GNSS receiver for hydrographic survey at Namgang dam basin to calculate pure sediment. Unlike traditional research, we used not field reference station but NTRIP service of the reference station of DGNSS(Differential Global Navigation Satellite System) Central Office in this GNSS survey. The calculation results show that scouring volume is $603,650m^3$, sediment volume is $3,913,750m^3$ and so pure sediment volume is $3,310,100m^3$ at Namgang dam basin. And the availability of the NTRIP service of the DGNSS Central Office for echo sounding in land area has been confirmed in this study.

Fish length dependence of target strength for black porgy and fat greenling at two frequencies of 70 and 120kHz (70 및 120kHz에서 쥐노래미와 감성돔에 대한 음향 반사 강도의 체장 의존성)

  • Lee, Dae-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.137-146
    • /
    • 2012
  • Black porgy and fat greenling are commercially important fish species due to the continuously increasing demand in Korea. When estimating acoustically the fish length by a fish sizing echo sounder, it is of crucial importance to know the target strength (TS) to length dependence. In relation to these needs, the target strength experiments for live fishes were conducted in an acrylic salt water tank using two split-beam echo sounders operating at 70 and 120kHz. The target strength under well-controlled laboratory conditions was simultaneously measured with the swimming movement by digital video recording (DVR) system and analyzed as a function of fish length (L) and frequency (or wavelength ${\lambda}$). Equations of the form TS-alog (L)+blog (1)+c were derived for their TS-length dependence. The best fit regression of TS on fork length for black porgy was TS=20.62 log (L, m)-0.62 log (${\lambda}$, m)-30.68 ($r^2$=0.77). The best fit regression of TS on fork length for fat greenling was TS=12.06 log (L, m)-5.85 log (${\lambda}$, m)-22.15 ($r^2$=0.44).

Development of Split-beam Acoustic Transducer for a 50 kHz Fish Sizing Echo Sounder (50 kHz 체장어군탐지기용 분할 빔 음향 변환기의 개발)

  • Lee, Dae-Jae;Lee, Won-Sub
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.413-422
    • /
    • 2011
  • An improved split-beam transducer for a 50 kHz fish-sizing echo sounder was developed. The main objective of this study was to minimize the side lobe level in the beam pattern and the distance between acoustic centers for adjacent transducer quadrants in the geometrical arrangement of array elements while maintaining a given number of transducer elements and beam width. To achieve these goals, a 32-element planar array transducer ($6{\times}6$ array with one element in each corner missing) was designed using the Dolph-Chebyshev shading function to suppress side lobes in the array beam pattern and fabricated by arranging the inter-element spacing to be substantially equal to half the wavelength using the transducer element of 0.4 times the wavelength in diameter. The performance characteristics of this split-beam transducer were evaluated in the experimental water tank of $5m{\times}5m{\times}6m$ (length${\times}$height${\times}$width). In this study, the design goal of the beam width and side lobe level for transmitting a beam pattern was initially set at $21^{\circ}$ and -30 dB, respectively. However, the measured beam width at 3 dB was $21^{\circ}$ in both directions with side lobe levels of -24.7 dB in the horizontal plane and -25.6 dB in the vertical plane. The averaged beam width at -3 dB of the receiving beam patterns for four receiving quadrants was $31.4^{\circ}$. The transmitting voltage response was 161.5 dB (re $1{\mu}Pa$/V at 1 m) at 50.23 kHz with a bandwidth of 2.16 kHz, and the averaged receiving sensitivity for four receiving quadrants was -178.13 dB (re 1 V/${\mu}Pa$) at 49.8 kHz with a bandwidth of 2.64 kHz.

Preliminary Investigation for Feasibility of Wave Energy Converters and the Surrounding Sea as Test-site for Marine Equipment

  • Park, Jin-Yeong;Baek, Hyuk;Shim, Hyungwon;Choi, Jong-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.351-360
    • /
    • 2020
  • Of late, demand for test sites for marine equipment such as ASV, AUV, ROV, and various underwater sensors is increasing. The authors have focused on an oscillating water column (OWC), which is being constructed near Chagwido Island Jeju, as one of the test-sites. The main objective of the OWC is to produce wave energy and develop technologies. It has been built in the sea approximately 1 km off the coast. It has berth accommodation and some rooms that can be used as laboratories. To investigate the feasibility of its usage as a test site for marine equipment, we acquired bathymetric data around the OWC by using a multi-beam echo sounder and a single-beam scanning sonar. The accessibility of the OWC from nearby ports and the use of support vessels or ships were also investigated. 3D point cloud data from the multi-beam echo sounder and 2D acoustic images from the scanning sonar are expected to be used as references for identifying changes over time. In addition, through these experiments, we derived a procedure to use this facility as a test site by using the IDEF0 functional modelling method. Based on this preliminary investigation and previously reported examples, we determined the general conditions and preferences for evaluating the performance of various marine equipment heuristically. Finally, we developed five applications that were derived from this investigation.

Development of a Seabed Mapping System using SeaBeam2000 Multibeam Echo Sounder Data (SeaBeam2000 다중빔 음향측심기를 이용한 해저면 맵핑시스템 개발)

  • 박요섭;김학일;이용국;석봉출
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.129-145
    • /
    • 1995
  • SeaBeam2000, a multibeam echo sounder, is a new generation seabed mapping system of which a single swath covers an angular range of -60.deg. to 60.deg. from the vertical direction with 121 beams. It provides high-density and high-quality bathymetric data along with sidescan acoustic data. The purpose of the research is to develop a system for processing multibeam underwater acoustic and bathymetric data using digital signal processing techniques. Recently obtained multibeam echo sounder data covering a survey area in the East Sea of Korea ($37{\circ}$.00'N to $37{\circ}$30'N and $129{\circ}$40'E to $130{\circ}$30'E) are preliminarily processed using the developed system and reproduced in the raster image format as well as three dimensionally visualized form.

Remote Seabed Classification Based on the Characteristics of the Acoustic Response of Echo Sounder: Preliminary Result of the Suyoung Bay, Busan (측심기의 음향반사 특성을 이용한 해저퇴적물의 원격분류: 부산 수영만의 예비결과)

  • Kim Gil Young;Kim Dae Choul;Kim Yang Eun;Lee Kwang Hoon;Park Soo Chul;Park Jong Won;Seo Young Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.273-281
    • /
    • 2002
  • Determination of sediment type is generally based on ground truthing. This method, however, provides information only for the limited sites. Recent developments of remote classification of seafloor sediments made it possible to obtain continuous profiles of sediment types. QTC View system, which is an acoustic instrument providing digital real-time seabed classification, was used to classify seafloor sediment types in the Suyoung Bay, Pusan. QTC View was connected to 50 kHz echo sounder, All parameters of QTC View and echo sounder are uniformly kept during survey. By ground truthing, the sediments are classified into seven types, such as slightly gravelly sand, slightly gravelly sandy mud, gravelly muddy sand, clayey sand, sandy mud, slightly gravelly muddy sand, and rocky bottom. By the first remote classification using QTC View, four sediment types are clearly identified, such as slightly gravelly sand, gravelly mud, slightly gravelly muddy sand, and rocky bottom. These are similar to the result of the second survey. Also the result of remote classification matches well with that of ground truthing, but for sediment type determined by minor component. Therefore, QTC View can effectively be used for remote classification of seafloor sediments.

Integrated Geospatial Information Construction of Ocean and Terrain Using Multibeam Echo Sounder Data and Airborne Lidar Data (항공 Lidar와 멀티빔 음향측심 자료를 이용한 해상과 육상의 통합 지형공간정보 구축)

  • Lee, Jae-One;Choi, Hye-Won;Yun, Bu-Yeol;Park, Chi-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.28-39
    • /
    • 2014
  • Several studies have been performed globally on the construction of integrated systems that are available for the integrated use of 3D geographic information on terrain and oceans. Research on 3D geographic modeling is also facilitated by the application of Lidar surveying, which enables the highly accurate realization of 3D geographic information for a wide area of land. In addition, a few marine research organizations have been conducting investigations and surveying diverse ocean information for building and applying MGIS(Marine Geographic Information System). However, the construction of integrated geographic information systems for both terrain and oceans has certain limitations resulting from the inconsistency in reference systems and datum levels between two data. Therefore, in this investigation, integrated geospatial information has been realized by using a combined topographical map, after matching the reference systems and datum levels by integration of airborne Lidar data and multi-beam echo sounder data. To verify the accuracy of the integrated geospatial information data, ten randomly selected samples from study areas were selected and analyzed. The results show that the 10 analyzed data samples have an RMSE of 0.46m, which meets the IHO standard(0.5m) for depth accuracy of hydrographic surveys.

Effect of Sound Velocity on Bathymetric Data Aquired by EM120(multi-beam echo sounder) (EM120(multi-beam echo sounder)을 이용한 지형조사 시 적용되는 해수 중 음속 측정의 중요성; 수중음속 측정장비의 특성 비교)

  • Ham, Dong-Jin;Kim, Hyun-Sub;Lee, Gun-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.295-301
    • /
    • 2008
  • Bathymetric data collected using a multi-beam echo sounder during marine scientific survey is essential for geologic and oceanographic research works. Accurate measurment of sound velocity profile(SVP) in water-column is important for bathymetric data processing. SVP can vary at different locations during the survey undertaken for wide areas. In addition, an observational error can occur when different equipments(Sound Velocity Profiler, Conductivity Temperature Depth, eXpendable BathyThermograph) are used for measuring SVP at the same water column. In this study, we used an MB-system software to show changes in bathymetry caused by variation of SVP. The analyses showed that the sound velocity(SV) changes due to the depth and thickness of thermocline had more significant effects on the resulting bathymetric data than those of surface mixed layer. The observational errors between SVP measuring instruments did not cause much differneces in the processed bathymetric data. Bathymetric survey line is better to be established to the direction that the change of temperature can be minimize to reduce the variation of SVP during the data acquisition along the survey line.