• 제목/요약/키워드: Echo state network

검색결과 8건 처리시간 0.028초

Network traffic prediction model based on linear and nonlinear model combination

  • Lian Lian
    • ETRI Journal
    • /
    • 제46권3호
    • /
    • pp.461-472
    • /
    • 2024
  • We propose a network traffic prediction model based on linear and nonlinear model combination. Network traffic is modeled by an autoregressive moving average model, and the error between the measured and predicted network traffic values is obtained. Then, an echo state network is used to fit the prediction error with nonlinear components. In addition, an improved slime mold algorithm is proposed for reservoir parameter optimization of the echo state network, further improving the regression performance. The predictions of the linear (autoregressive moving average) and nonlinear (echo state network) models are added to obtain the final prediction. Compared with other prediction models, test results on two network traffic datasets from mobile and fixed networks show that the proposed prediction model has a smaller error and difference measures. In addition, the coefficient of determination and index of agreement is close to 1, indicating a better data fitting performance. Although the proposed prediction model has a slight increase in time complexity for training and prediction compared with some models, it shows practical applicability.

Echo State Network 모델의 은닉 뉴런 간 연결구조에 따른 성능과 동역학적 특성 분석 (Analyzing Performance and Dynamics of Echo State Networks Given Various Structures of Hidden Neuron Connections)

  • 윤상웅;장병탁
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권4호
    • /
    • pp.338-342
    • /
    • 2015
  • 시계열 데이터를 다룰 수 있는 기계학습모델인 회귀 신경망은 되먹임 연결을 허용하기 때문에 앞먹임 신경망에 비해 훨씬 다양한 구조를 가질 수 있다. 본 연구에서는 은닉 뉴런 간의 네트워크 구조에 초점을 맞추어 그것이 회귀 신경망의 정보처리 능력에 미치는 영향을 탐구하고자 한다. 이를 위해 회귀신경망 모델 중 하나인 Echo State Network을 기준으로 하여, 여러 가지 잘 알려진 네트워크 모델에 따라 은닉 뉴런 간 연결을 구성하고 각각의 경우에 시계열 학습 능력과 동역학을 분석하였다. 그 결과, 은닉 뉴런의 네트워크 구조에 따라 모델의 성능이 큰 폭으로 변하는 것이 관찰되었으며, 그러한 현상은 신경망 동역학이 가지는 임계도(criticality)의 변화와 잘 일치했다. 본 연구의 결과는 기존 회귀 신경망 연구에서 주된 관심사였던 신경망 연결 가중치뿐만 아니라 신경망의 연결 구조가 모델의 성능에 중요한 영향을 미친다는 사실을 보여주며, 성능 향상을 위한 중요한 단서가 될 수 있다.

Texture Based Automated Segmentation of Skin Lesions using Echo State Neural Networks

  • Khan, Z. Faizal;Ganapathi, Nalinipriya
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.436-442
    • /
    • 2017
  • A novel method of Skin lesion segmentation based on the combination of Texture and Neural Network is proposed in this paper. This paper combines the textures of different pixels in the skin images in order to increase the performance of lesion segmentation. For segmenting skin lesions, a two-step process is done. First, automatic border detection is performed to separate the lesion from the background skin. This begins by identifying the features that represent the lesion border clearly by the process of Texture analysis. In the second step, the obtained features are given as input towards the Recurrent Echo state neural networks in order to obtain the segmented skin lesion region. The proposed algorithm is trained and tested for 862 skin lesion images in order to evaluate the accuracy of segmentation. Overall accuracy of the proposed method is compared with existing algorithms. An average accuracy of 98.8% for segmenting skin lesion images has been obtained.

Accelerated Resting-State Functional Magnetic Resonance Imaging Using Multiband Echo-Planar Imaging with Controlled Aliasing

  • Seo, Hyung Suk;Jang, Kyung Eun;Wang, Dingxin;Kim, In Seong;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • 제21권4호
    • /
    • pp.223-232
    • /
    • 2017
  • Purpose: To report the use of multiband accelerated echo-planar imaging (EPI) for resting-state functional MRI (rs-fMRI) to achieve rapid high temporal resolution at 3T compared to conventional EPI. Materials and Methods: rs-fMRI data were acquired from 20 healthy right-handed volunteers by using three methods: conventional single-band gradient-echo EPI acquisition (Data 1), multiband gradient-echo EPI acquisition with 240 volumes (Data 2) and 480 volumes (Data 3). Temporal signal-to-noise ratio (tSNR) maps were obtained by dividing the mean of the time course of each voxel by its temporal standard deviation. The resting-state sensorimotor network (SMN) and default mode network (DMN) were estimated using independent component analysis (ICA) and a seed-based method. One-way analysis of variance (ANOVA) was performed between the tSNR map, SMN, and DMN from the three data sets for between-group analysis. P < 0.05 with a family-wise error (FWE) correction for multiple comparisons was considered statistically significant. Results: One-way ANOVA and post-hoc two-sample t-tests showed that the tSNR was higher in Data 1 than Data 2 and 3 in white matter structures such as the striatum and medial and superior longitudinal fasciculus. One-way ANOVA revealed no differences in SMN or DMN across the three data sets. Conclusion: Within the adapted metrics estimated under specific imaging conditions employed in this study, multiband accelerated EPI, which substantially reduced scan times, provides the same quality image of functional connectivity as rs-fMRI by using conventional EPI at 3T. Under employed imaging conditions, this technique shows strong potential for clinical acceptance and translation of rs-fMRI protocols with potential advantages in spatial and/or temporal resolution. However, further study is warranted to evaluate whether the current findings can be generalized in diverse settings.

A Comparison Study of MIMO Water Wall Model with Linear, MFNN and ESN Models

  • Moon, Un-Chul;Lim, Jaewoo;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.265-273
    • /
    • 2016
  • A water wall system is one of the most important components of a boiler in a thermal power plant, and it is a nonlinear Multi-Input and Multi-Output (MIMO) system, with 6 inputs and 3 outputs. Three models are developed and comp for the controller design, including a linear model, a multilayer feed-forward neural network (MFNN) model and an Echo State Network (ESN) model. First, the linear model is developed by linearizing a given nonlinear model and is analyzed as a function of the operating point. Second, the MFNN and the ESN are developed by using training data from the nonlinear model. The three models are validated using Matlab with nonlinear input-output data that was not used during training.

한국어 음성인식 플랫폼 (ECHOS) 개발 (Development of a Korean Speech Recognition Platform (ECHOS))

  • 권오욱;권석봉;장규철;윤성락;김용래;장광동;김회린;유창동;김봉완;이용주
    • 한국음향학회지
    • /
    • 제24권8호
    • /
    • pp.498-504
    • /
    • 2005
  • 교육 및 연구 목적을 위하여 개발된 한국어 음성인식 플랫폼인 ECHOS를 소개한다. 음성인식을 위한 기본 모듈을 제공하는 BCHOS는 이해하기 쉽고 간단한 객체지향 구조를 가지며, 표준 템플릿 라이브러리 (STL)를 이용한 C++ 언어로 구현되었다. 입력은 8또는 16 kHz로 샘플링된 디지털 음성 데이터이며. 출력은 1-beat 인식결과, N-best 인식결과 및 word graph이다. ECHOS는 MFCC와 PLP 특징추출, HMM에 기반한 음향모델, n-gram 언어모델, 유한상태망 (FSN)과 렉시컬트리를 지원하는 탐색알고리듬으로 구성되며, 고립단어인식으로부터 대어휘 연속음성인식에 이르는 다양한 태스크를 처리할 수 있다. 플랫폼의 동작을 검증하기 위하여 ECHOS와 hidden Markov model toolkit (HTK)의 성능을 비교한다. ECHOS는 FSN 명령어 인식 태스크에서 HTK와 거의 비슷한 인식률을 나타내고 인식시간은 객체지향 구현 때문에 약 2배 정도 증가한다. 8000단어 연속음성인식에서는 HTK와 달리 렉시컬트리 탐색 알고리듬을 사용함으로써 단어오류율은 $40\%$ 증가하나 인식시간은 0.5배로 감소한다.

시공간적 강우특성이 반영된 ESN 알고리즘을 활용한 하수관로 수위 변화 예측 (Prediction of Changes in Water Level in Sewage Pipes Using ESN Algorithm Reflecting Spatial Rainfall Characteristics)

  • 이소현;강동호;김병식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.460-460
    • /
    • 2023
  • 최근 범 지구적인 기후변화로 인해 집중호우가 빈번히 발생하고 침수피해가 증가하고 있다. 이에 따른 침수 피해 위험이 큰 지하상가, 지하 주차장, 반지하 주택 등의 침수 발생이 잦아지며 인명 및 재산 피해 발생이 커지고 있다. 이러한 지역은 인근 하수관로의 수위에 따라 침수 영향을 크게 받게 된다. 이에 따른 강우·유출 관계는 침수피해에 대해 대처하기 위해 시공간적 강우 특성이 반영된 하수관로 수위 예측이 중요하다고 판단된다. 이에 본 연구에서 수위 자료는 서울시 하수관로 수위 현황 자료를 활용하였으며, 강수량 자료는 서울 내 서초구 일대의 강수량 자료를 활용하여 연구를 진행하였다. 대상 지역은 저지대에 위치해 침수가 잦은 서초구 서초동으로 선정하였으며, 분석에 사용된 기간은 2012년부터 2021년까지의 수위 자료를 화용하여 이를 바탕으로 순환 신경망인 RNN의 일종이며, 다른 모델의 구조와 비교하여 더욱 간단하고 효율적인 ESN(Echo State Network) 알고리즘을 사용하여 수위 예측을 진행하였다. 분석을 위해 대상 지역의 강수 사상이 발생하여 하수관로의 수위의 변동이 큰 기간을 선정하여 분석을 실시하였다. 2012년부터 2018년까지의 자료를 학습(training) 자료로 활용하였으며, 모형의 검증 위해 통계분석을 실시하여 검증하였다.

  • PDF

Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study

  • Hyeong Woo Kim;Subin Lee;Jin Ho Yang;Yeonsil Moon;Jongho Lee;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • 제24권11호
    • /
    • pp.1131-1141
    • /
    • 2023
  • Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.