• Title/Summary/Keyword: Echo reduction (ER)

Search Result 4, Processing Time 0.016 seconds

A study on the new absorption material for anechoic water tank (무향수조를 위한 흡음재질에 관한 연구)

  • Kim, Sung-Boo;Lee, Jong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.2
    • /
    • pp.174-179
    • /
    • 2012
  • A new absorption material, cellulose sponge soaked in cement, was made for anechoic water tank and its acoustical properties were investigated by pulse methods. The sound absorption coefficient a (dB/cm) of the material was obtained in the frequency range of 40~120kHz from the echo reduction ER (dB) and insertion loss IL (dB) data. The result was averagely 1.8dB/cm higher than the sound absorption coefficient a (dB/cm) of cork-filled rubber which is one of the most effective absorption materials. The wedge (1.2~5.0cm long) type absorption tiles were made with this new material. The echo reduction ER (dB) of the absorption tile with 5.0cm wedge measured in water tank was higher than 20dB in the experimental frequency range.

An Acoustic Reception Ability Analysis of SONAR Multilayer Structures by Using Elastic Theory (탄성이론을 이용한 소나 다층구조물의 음향 수신 성능해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun;Kim, Sung-Hee;Jeon, Jae-Jin;Seo, Young-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.301-307
    • /
    • 2013
  • SONAR detection performance is one of the key survivability factors in underwater weapon systems. In order to catch the acoustic ability of SONAR, multilayer SONAR structures are analyzed using the elastic theory. The applied results for the simple models are compared with those from commercial program, ANSYS, and the reliable results are obtained. The analysis of sound pressure level (SPL) and echo reduction (ER) by the thickness change of multilayer SONAR structures are performed using the verified elastic theory. As the thickness of anechoic layer is increased, SPL is distributed evenly and ER is increased slightly with the frequency. In decoupling layers and steel layers, SPL are hardly changed and ER is slightly decreased with the thickness increase of those layers. SPL and ER are not affected by the thickness change of the carbon reinforced plastic (CRP) layer. Therefore, to improve the acoustic ability of multilayer SONAR structures, the thickness increase of the anechoic layer and minimization of the decoupling layer, steel layer and CRP layer are desirable.

Development of Underwater Acoustic Performance Measurement System Using Pulse Tubes (펄스 튜브를 이용한 수중 음향 성능 측정 시스템 개발)

  • Seo, Yun-Ho;Kim, SangRyul;Lee, Sung-Min;Byun, Yang-Heon;Seo, Youngsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Underwater acoustic materials are installed in order to reduce reflection, transmission and radiation of an underwater structure. The acoustic performance of the materials should be evaluated in accurately-controlled environment in terms of temperature and static pressure. In this paper, two pulse tubes, which are equipped with temperature and pressure controllers, are designed and developed to evaluate echo reduction(ER) and transmission loss(TL) of underwater acoustic materials. The procedures of the evaluation are suggested and the validation is carried out by comparing theoretical values to experimental results for a simple stainless steel specimen and free surface. In result, it is validated that developed pulse tubes are able to measure ER and TL with 2 dB tolerance.

Measurement System for Performance Evaluation of Acoustic Materials in a Small Water Tank (소형수조에서 음향재료의 반향음감소와 투과손실 측정시스템 구성)

  • Shin, Mi-Ru;Cho, Jung-Hong;Lee, Kyung-Teak;Kim, Jea-Soo;Jeon, Jae-Jin;Ham, Il-Bea;Kang, Chang-Gi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • Since the detection probability is critically dependent on the target strength (TS) in active sonar and on the radiated noise level (RNL) in passive sonar, the acoustic materials for echo reduction (ER) and transmission loss (TL) are widely used for the stealth of underwater targets. In this paper, a measurement system based on the small water tank, for the frequency range of greater than 30 kHz, is developed and verified using reference targets. In order to design the water tank and the geometry of test samples, a program is developed to calculate the arrival time of interfering signals due to the reflection from water tank walls and also due to the diffraction from the edge of the test samples. Considering all the interfering signals, an optimal experimental configuration for water tank and test samples is designed and used throughout the experiment. Next, the signal processing algorithms to estimate ER and TL are developed based on the measured propagation loss reflecting the geometric spreading characteristics of the transducer. Finally, a set of reference targets such as aluminium plate and perfectly reflecting plate are used in a small water tank to verify the developed measurement system.